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Summary

Natural hazards may cause significant disruptions to road infrastructure, subse-
quently affecting road agencies, users, and productive activities. Despite the exis-
tence of infrastructure fragilities to seismic hazard and some operational conse-
quences on network mobility, previous research has not modeled risk in terms of
traffic disruptions and consequent travel time delays in subduction environments,
analyzing the sensitivity to model parameters and quantified model uncertainty. This
study proposes a risk framework to evaluate operational consequences in interur-
ban road networks exposed to seismic hazard using travel time delays and propagate
uncertainty in the model. Risk values are evaluated using Monte Carlo simulations
and uncertainty is propagated using a polynomial chaos expansion meta-model. The
framework was applied to a very critical interurban network in central Chile. Results
demonstrate that the parameters that most significantly influence risk are fragility,
loss of road capacity and traffic volume.
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1 INTRODUCTION

Natural hazards may produce physical and subsequent opera-
tional effects on the road network, such as travel time delays,
speed reductions or traffic congestion. According to Bil et al.
(2014), these effects can be categorized as: (1) destruction
of the infrastructure and permanent traffic interruption until
the affected structures are restored; (2) partial structural dam-
age that limits operation; and (3) traffic interruption without
structural damage. The main purpose of transportation net-
works is to supply mobility, accessibility (AASHTO, 2011)
and also to facilitate recovery after disruptive events (Duwadi
& Pagán-Ortiz, 2013).

Network topology has been studied to assess the operational
effects of natural events in terms of redundancy level and net-
work complexity (e.g., Downer, 2009; Gao et al., 2019). Also,

Javanbarg et al. (2008) highlighted the importance of redun-
dancy from the perspective of optimal traffic assignment, its
relation with operational impacts in unexpected events, and
the optimal evaluation of mitigation strategies. Several indica-
tors have been proposed to address this phenomenon in terms
of travel capacity (Lee et al., 2011), connectivity (Bocchini
& Frangopol, 2013), reliability of travel times (Zhang et al.,
2015), flexibility of the capacity (Morlok & Chang, 2004), net-
work coverage (S. E. Chang & Nojima, 2001), and redundancy
indexes (Ip & Wang, 2011), among others. Nevertheless, most
authors propose indicators to evaluate road network perfor-
mance in urban environments (Tang & Huang, 2019) under
normal operation conditions, i.e., not considering the physical
damage produced by a natural event.

As an example of the relation between damaged road infras-
tructure and its operational consequences, the Northridge
earthquake, California (1994) had an important impact on the
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travel time due to damage to the Los Angeles road infras-
tructure. Indeed, two bridges of interstate highway I-10, con-
necting the city of Los Angeles and Santa Monica collapsed
(Giuliano & Golob, 1998). Alternative routes were provided
to mitigate the situation; however, the travel times increased
significantly. For example, the average travel time for people
living in north Los Angeles increased from 29.4 to 51.1 min-
utes to move from home to work, i.e., an increase of 73.8%
(Giuliano & Golob, 1998).

Transportation networks exposed to natural hazards have
been studied from different perspectives and with different
objectives. For example, some studies have been focused in
the definition and conceptualization of risk (e.g., Bil et al.,
2014; Lowrance, 1976; Renn, 2008), the hazard model-
ing (Jayaram & Baker, 2010), the evaluation of performance
indicators (e.g., Argyroudis et al., 2015; Faturechi & Miller-
Hooks, 2015), direct losses (e.g., Kiremidjian, Moore, et al.,
2007; Kiremidjian, Stergiou, & Lee, 2007) and resilience (Gao
et al., 2019).

On the other hand, some studies have focused on the mitiga-
tion of the hazard effects in terms of infrastructure retrofit or
evacuation processes. For example, in terms of infrastructure
retrofit, L. Chang, Peng, et al. (2012) proposed a bridge retrofit
program to maximize post-earthquake response in terms of
highway capacity in Memphis, Fan et al. (2010) developed a
two-stage stochastic program to optimize mitigation on bridges
in Alameda County, and Huang et al. (2014) proposed an
algorithm to minimize direct cost after seismic events through
optimal bridge intervention. However, all these models are
focuses on the optimization process after a particular hazard
scenario in order to reduce the impact on bridges. In terms of
evacuation processes, some works have focused on the imple-
mentation of algorithms for the design of road networks to
mitigate the effects of natural hazards on evacuation routes
after the events. For example, Nahum et al. (2017) developed
a model for the design of an optimal evacuation network that
minimizes cost and evacuation time under extreme conditions,
Hadas & Laor (2013) proposed a new heuristic optimization
model to design evacuation road networks in order to reduce
travel times and Forcael et al. (2014) proposed a simulation
model to define optimum evacuation routes during a tsunami
using Ant Colony Algorithms (ACO), and demonstrated that
the evacuation times obtained with their model are similar to
the times observed in the field. Even though, these models have
sophisticated optimization algorithms for evacuation design,
they are focused on the reduction of cost and travel times after a
potential event scenario and do not consider the potential effect
of multiple scenarios or the probability of occurrence of them.

Interurban road networks are characterized by an uninter-
rupted associated flow but little topological redundancy, unlike
urban road networks that have interrupted flows with high

topological redundancy. This difference makes road infrastruc-
ture in interurban networks more critical since the collapse of
certain infrastructure may lead to large travel time delays due
to potential detours. In this respect, the transportation assign-
ment model is essential to assess the consequences of road
interruptions in terms of user travel times.

This study applies a simulation-based probabilistic seis-
mic risk evaluation model that has been used in the literature
for spatially distributed infrastructure (e.g., Argyroudis et al.,
2015; Crowley & Bommer, 2006; Jayaram & Baker, 2010)
and adapts it to evaluate operational consequences in road net-
works exposed to natural hazards using travel time delays.
Furthermore, the study quantifies the epistemic uncertainty
using a polynomial chaos expansion and the sensitivity of fac-
tors that affect the risk. The model considers different aspects,
such as the hazard recurrence model, fragility of road assets,
reduction in traffic capacity due to different damage states, flow
assignment, evaluation of network performance, the evaluation
of risk curves and the incidence of each factor to the total risk.
The risk model and the uncertainty quantification model are
applied in central Chile to evaluate the consequences on the
road network due to the effect of the seismic hazard. Finally,
the model has been developed for earthquake events but it can
be adapted for other hazards.

2 RISK MODELING OF ROAD
NETWORKS EXPOSED TO SEISMIC
HAZARD IN TERMS OF TRAVEL TIME

The risk assessment methodology considered in this study is
based on the stochastic modeling of different consequences
resulting from a set of synthetic realizations (scenarios). Risk
assessment requires a wide understanding of the problem of
interest, from the hazard to the system response. For instance,
the transportation system can be affected by geological or
hydro-meteorological hazards, which will affect in different
ways the infrastructure and the traffic flow. Figure 1 presents
the conceptual framework for assessing the risk of road net-
works. The model estimates risk in terms of the impact of
multiple earthquakes on the road network and traffic after
quake occurrence, once a transitory phase has ended. I.e., the
model does not attempt to analyze the traffic process in a
transient period immediately after the earthquakes.

The proposed framework (Figure 1 ) considers three steps:
(1) input data; (2) processes; and (3) results. Input data corre-
sponds to those originate by the models required for assessing
risk. The hazard model is used to generate seismic scenarios
with intensities at all locations. The road network assets model
provides properties such as the location, lane numbers, lane
capacity, free-flow speed and structural properties of bridges,
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tunnels and roadways. The transportation model refers to the
information regarding the origin-destination travels and flow.

The process begins with the characterization of the earth-
quake hazard through recurrence models calibrated in the
study zone. After, the earthquake intensity (IM) in each high-
way asset location is estimated using a ground motion model
(e.g., Abrahamson et al., 2016). Given the IM, damage states
are sampled using fragility curves calibrated for each type of
assets of the road network. A fragility curve specifies the prob-
ability of exceedance of different damage states given a certain
intensity level (Mackie & Stojadinovic, 2004). This probability
is represented by a probability distribution function (pdf) (e.g.,
Argyroudis et al., 2013; Basöz & Mander, 1999; G&E, 1994;
Maruyama et al., 2010; NIBS, 2004), according to Equation 1.

𝐹 (𝑖𝑚, 𝜇, 𝜎) = Φ
(

ln(𝑖𝑚) − 𝜇
𝜎

)

(1)

In Equation 1, 𝑖𝑚 is the hazard intensity; 𝜇 and 𝜎 are the
parameters of the fragility function, which represent the mean

and standard deviation of the natural logarithm intensity at
which the damage state is reached respectively.Φ(⋅) is the pdf
of a standard normal distribution.

In order to sample the damage state for each realization and
road asset, a random number seed is generated between 0 and
1 using a uniform distribution denoted as 𝑟𝑛𝑗 (a random num-
ber for the 𝑛-th realization and the 𝑗-th road asset). Table 1
shows the ranges of the random number used to assign one
of four damage states to the road asset, based on the sampled
𝑟𝑛𝑗 value, where (𝜇𝑖, 𝜎𝑖), 𝑖 = 1, 2 and 3 are the parameters
of the lognormal distribution associated with slight, moderate
and severe damage state, respectively. Hence, each road asset
adopts a single damage state in each realization.

Each damage state sets a highway capacity value. For
instance, in the damage state “no damage”, the highway capac-
ity keeps constant and, for a “moderate” damage state, the
highway capacity is lower than the one associated to “no dam-
age” state. Once each asset damage state is obtained, the traffic
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FIGURE 1 Conceptual framework of the road network risk evaluation
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TABLE 1 Ranges used to assign damage states with a random
number uniformly distributed between 0 and 1

Damage State Condition

No damage 𝑟𝑛𝑗 ∈
[

𝐹 (𝑖𝑚, 𝜇1, 𝜎1), 1
]

Slight damage 𝑟𝑛𝑗 ∈
[

𝐹 (𝑖𝑚, 𝜇2, 𝜎2), 𝐹 (𝑖𝑚, 𝜇1, 𝜎1)
)

Moderate damage 𝑟𝑛𝑗 ∈
[

𝐹 (𝑖𝑚, 𝜇3, 𝜎3), 𝐹 (𝑖𝑚, 𝜇2, 𝜎2)
)

Severe damage 𝑟𝑛𝑗 ∈
[

0, 𝐹 (𝑖𝑚, 𝜇3, 𝜎3)
)

is assigned to the highway network to obtain a new equilib-
rium, considering that after the earthquake there is a time lapse
in which part of the road network is damaged with capacity
and operating speed different to those before the earthquake.
The configuration of origin-destination (OD) pairs and the
travels between the OD pairs after an earthquake require spe-
cial attention. As a consequence of a seismic event OD pairs
may change, travels may decrease or the traffic daily patterns
may change. These effects on the transportation system and
traffic need to be studied on a case-by-case basis depending
on the observed phenomena and available data. Furthermore,
depending on the daily traffic variability, static or dynamic OD
matrices may be required to reliably assign traffic to a network.
If the traffic pattern in the road network is highly variable, the
better option is to use the dynamic traffic assignment method
(DTA). In contrast, if traffic is stable within the day, static
traffic assignment (STA) may be suitable. The election of the
proper traffic assignment approach depends on the daily traffic
pattern and data availability

The transportation model considers the effect of different
vehicle classes present on traffic flow, by using the passenger-
car equivalent factors (pce) of Table 2 . The passenger-car
equivalent is the number of passenger car displaced by a heavy
vehicle under specified roadway, traffic and control conditions
(HCM, 2016).

TABLE 2 Passenger Car Equivalent (pce) factors (HCM,
2016)

Type of vehicle Equivalence factor (pdce)

Car (PC) 1
Bus (IUB) 1.5 - 2
Simple Truck (ST) 2 - 2.5
Double 2 Axles (DT) 2.5 - 3

The travel times are obtained using the user equilibrium
principle first proposed by Beckmann et al. (1956), where each
user aims to minimize his or her travel time. The link flows

are obtained by solving the optimization problem presented in
Equations (2)-(6).

min
∑

𝑎∈𝐴

𝑓𝑎

∫
0

𝑡𝑎(𝑢) d𝑢 (2)

subject to
∑

𝑝∈𝑃𝑊

ℎ𝑝 = 𝑇𝑊 , ∀𝑤 ∈ 𝑊 (3)

𝑓𝑎 =
∑

𝑝∈𝑃
𝛿𝑎𝑝 ⋅ ℎ𝑝 , ∀ 𝑎 ∈ 𝐴 (4)

ℎ𝑝 ≥ 0 , ∀ 𝑝 ∈ 𝑃 (5)
𝑓𝑎 ≥ 0 , ∀ 𝑎 ∈ 𝐴 (6)

In this model, 𝑤 is an origin-destination pair; 𝑊 is the
set of all origin-destination pairs; 𝑃 corresponds to all possi-
ble routes in the network; 𝑃𝑊 is the subset of 𝑃 with all the
routes connecting the origin-destination pair 𝑤; 𝑝 is a specific
route in the network; 𝑇𝑊 represents the demand in the origin-
destination pair 𝑤; ℎ𝑝 is the flow in route 𝑝; 𝑓𝑎 is the flow in
link 𝑎; 𝐴 is the set of all the links in the network; 𝑡𝑎 is the travel
time for link 𝑎; and 𝛿𝑎𝑝 is Kronecker delta of whether link 𝑎
belongs to route 𝑝 (it takes the value 1 when link 𝑎 belongs to
the route, and the value 0 when it does not).

The constraint presented in Equation (3) establishes that
travel demand for the origin-destination pair 𝑤 must be equal
to the sum of the flows of all routes connecting that origin-
destination pair. The value of 𝑇𝑊 comes directly from the
origin-destination matrix, which reflects the user demand for
traveling between different origin-destination pairs. Addition-
ally, Equation (4) establishes that the flow of each link 𝑓𝑎 must
be equal to the sum of the flows of all routes passing through
that link for all origin-destination pairs. Moreover, Equations
(5) and (6) establish the conditions for positiveness of the
flows.

The relation between travel time in each link and the
assigned flow is obtained from the equations (7) and (8) for
multi-lane highways and two-lane highways respectively HCM
(2016).

𝑡𝑎 = 𝑡𝑜𝑎

[

1 + 𝛼
(

𝑓𝑎
𝑐𝑎

)𝛽
]

(7)

𝑡𝑎 =
𝑑𝑎

𝐹𝐹𝑆𝑎 − 0.0125𝑓𝑎 − 𝜖𝑛𝑝
(8)

where 𝑡𝑎 is the travel time of link 𝑎; 𝑡𝑜𝑎 is the travel time
for link 𝑎 under free-flow traffic conditions; 𝑓𝑎 is the flow
assigned to link 𝑎; 𝑐𝑎 is the road capacity in terms of vehicles
per hour; 𝛼 and 𝛽 are constants calibrated for each road cat-
egory (HCM, 2016); 𝐹𝐹𝑆𝑎 is the free-flow speed of link 𝑎;
and 𝜖𝑛𝑝 is the adjustment factor to account no-passing zones on
two-lane highways HCM (2016). Equation 8 is valid for differ-
ent traffic ratios between lanes for two-lane roads. The effect
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of asymmetric traffic per lane is considered by the factor 𝑓𝑛𝑝.
Both equations are also valid for uncongested traffic. There-
fore, delays on specific nodes in the network where the damage
results in alternate traffic, delays can be emulated by setting
low operating speed used in work zones areas.

These equations have been applied in extreme conditions
resulting from natural event disruptions (e.g., Chamorro et al.,
2020; L. Chang, Elnashai, & Spencer, 2012; Fan et al., 2010;
Feng et al., 2020; Jayaram & Baker, 2010; Kiremidjian, Ster-
giou, & Lee, 2007). For example Feng et al. (2020) developed
a scenario-based methodology to model the road network per-
formance using the BPR function. Jayaram & Baker (2010)
developed a new efficient hazard sampling model and applied it
to the transportation system, where the travel time in each link
is calculated based on the BPR function. Furthermore, Fan et
al. (2010) optimized a mitigation program to reduce the impact
of earthquakes in the road network and used BPR equations to
estimate the relation between travel times and link flow.

To solve the traffic assignment through equations (3) – (7)
there exist several algorithms, such us Frank-Wolfe’s algorithm
(Frank & Wolfe, 1956), the method of successive averages
(MSA) (Sheffi & Powell, 1982) or the incremental assignment
algorithm (ITA) (Martin & Manheum, 1965), among others.
The election of the proper algorithms depends on the compu-
tation cost (which depends on the size of the road network), the
number of realizations and the traffic patterns of the network.

The study aims to evaluate travel time between two nodes
in inter-urban road networks once the transient phase of traf-
fic assignment has ended and prior to the restoration process.
Travel time is computed under the assumption that, given phys-
ical damage, highway capacity and average speed are reduced
in the affected sections, and hence travel time increases. The
origin-destination matrices do not change in this analysis.

Finally, risk is characterized by the mean annual frequency
of an output variable 𝑂𝑉 , 𝜆𝑂𝑉 , which represents the effect of
the hazard scenario on the system, such as economic losses,
infrastructure damage or travel time delay, among others
(Mostafaei, 2013). The combinatoric nature of the problem and
the complexity of evaluating all possible events of a given haz-
ard make the problem amenable for an approximation through
numerical simulations of the system’s response. Therefore, a
finite number of realizations of the hazard must be defined in
order to perform a stochastic analysis of the system. To obtain
the annual frequency of exceedance 𝜆𝑂𝑉 (𝑜𝑣), is necessary to
evaluate the performance of the system for each realization
and to record the exceedance (or not) of the output variable.
The frequency of exceedance is estimated as the frequency of
events multiplied by the proportion of events where a given
value of the output variable, 𝑜𝑣, is exceeded:

𝜆𝑂𝑉 (𝑜𝑣) = 𝜈𝐸[𝐼(𝑜𝑣𝑖 > 𝑜𝑣)] ≈ 𝜈 1
𝑛

𝑛
∑

𝑖=1
𝐼(𝑜𝑣𝑖 > 𝑜𝑣) (9)

where 𝐸[⋅] is the expected value; 𝑛 is the number of sim-
ulations; 𝑜𝑣𝑖 is the value of the output variable for the 𝑖-th
simulation; 𝜈 is the mean annual frequency of events; and 𝐼(⋅)
is an indicator function, which is 1 if the argument is true and 0
if not. Depending on the variability of the hazard and the effect
on the system, thousands of simulations could be required for
this procedure to obtain results with an acceptable amount of
error.

3 RISK MODEL APPLICATION IN
CENTRAL CHILE

The objective of this section is to apply the model to the
interurban road network in central Chile and evaluate the even-
tual operational consequences, measured as changes in travel
time, as a result of the disruption of seismic hazard.

The Chilean economy is highly dependent on port opera-
tion, which includes the transportation of imports and exports.
In this context arises the interest of evaluating the effect of
seismic events on the road network that connects the two main
ports, San Antonio and Valparaiso, with Santiago, the main
city of Chile. These two ports move more than 50% of the
cargo, and new projects to increase their capacity are being
analyzed (Ministry of Transport and Telecommunications of
Chile, 2018).

The study evaluates travel time between two nodes in inter-
urban road networks once the transient phase of traffic assign-
ment has ended and prior to the restoration process. Travel
time is computed under the assumption that, given physical
damage, highway capacity and average speed are reduced in
the affected sections, and hence travel time increases. The
origin-destination matrices do not change in this analysis.

3.1 Road network definition
The network considered corresponds to the inter-urban road
network of the Metropolitana and Valparaiso regions, encom-
passing the main international, domestic, and regional routes,
according to the categories described in the Chilean Highway
Manual (MOP, 2019). The network under study has a length
2,072 km, from which 1,244 km are multi-lane roads and 828
km are two-lane highways (See Figure 2 ). The network has
59 bridges and 8 tunnels. The model of the road network of
Figure 2 has 158 nodes and 173 links. The nodes represent
the intersections and the links the roads, bridges and tunnels.
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FIGURE 2 Road network of the central region of Chile

The multi-lane highways capacity was settled in 2400
pc/h/ln according to HCM (2016). The operating speed in two-
lane highways was set at 70 km/h for the purposes of this
modeling, which is modified according to the damage states.

The origin destination and traffic data was obtained from
the National Traffic Survey of the Chilean Ministry of Public
Works (MOP). The annual average daily traffic is 9,590 and
10,838 for the pairs Santiago - Valparaíso and Santiago - San
Antonio respectively where the heavy vehicles represent the
13.7% and 12.7% respectively.

3.2 Seismic hazard
The seismic risk of the network is assessed by evaluating its
performance when subjected to a set of synthetic earthquake
scenarios. The approach uses Monte Carlo simulations to gen-
erate these scenarios in order to consider different sources of
uncertainty (Jayaram & Baker, 2010). The first step of the
assessment consists in sampling earthquake sources, each with
a magnitude and a hypocentral location. A total of 50,000
sources were sampled and their epicenters are shown in Figure
3 together with the components of the network. Only sce-
narios with epicenters that were closer than 500 km to at
least one component of the system were considered. These
sources are consistent with the local seismic hazard since they
are generated by using a recently developed earthquake recur-
rence model developed for the study region (Poulos et al.,
2019). This model separated the subduction seismicity of Chile
into seven zones with distinct seismic productivity, geome-
try, and maximum magnitude. Western coastal zones generate

subduction intraplate earthquakes along the boundary of the
subducting Nazca Plate and the overriding South American
Plate, whereas eastern zones generate subduction intraslab slab
earthquakes within the Nazca Plate. The boundary between
these two zones is highlighted by the differences in seismic
productivity observed in Figure 3 . Shallow intraplate seis-
micity within the South American plate was not considered in
this analysis due to its lower recurrence compared to subduc-
tion seismicity, its faster attenuation, and the reduced number
of crustal faults near the network components.

FIGURE 3 Locations of the epicenters of sampled seismic
scenarios

In order to increase the computational efficiency, an impor-
tance sampling procedure proposed by (Poulos et al., 2017)
was used, which samples earthquake magnitudes with a uni-
form distribution instead of their natural truncated exponential
distribution. This sampling scheme increases the number of
earthquakes with moderate to high magnitude, which has a
greater contribution to the overall risk of the system than low
magnitude earthquakes.

Once earthquake sources are sampled, the peak ground
accelerations (PGA) at the locations of each system component
are sampled using the following equation:

ln(PGA𝑖𝑗) = ln(PGA𝑖𝑗) + 𝜎𝑖𝑗𝜀𝑖𝑗 + 𝜏𝑗𝜂𝑗 (10)
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where PGA𝑖𝑗 is the sampled PGA that affects component
𝑖 during earthquake 𝑗; PGA𝑖𝑗) is the median PGA affect-
ing component 𝑖 during earthquake 𝑗, which is computed
using a ground motion model (GMM); 𝜎𝑖𝑗 and 𝜏𝑗 are the
intra-event and inter-event standard deviation terms, which are
also obtained from a GMM; 𝜂𝑗 is the normalized inter-event
residual, sampled once for each earthquake scenario using a
standard normal distribution; and 𝜀𝑖𝑗 is the normalized intra-
event residual, which is sampled from a multivariate normal
distribution with zero mean, unit standard deviation, and a cor-
relation structure derived elsewhere (Jayaram & Baker, 2009).
The GMM used in this study was developed for subduction
earthquakes using a global database (Abrahamson et al., 2016).
Local soil conditions at the sites of the system components
are considered in the GMM by using the average shear-wave
velocity in the top 30 meters of soil, which were derived from
a global database of the United States Geological Survey.

3.3 Fragility of road assets
Fragility models developed by different authors were used in
this study. Table 3 summarizes the lognormal parameters
employed for each fragility curve and type of infrastructure,
which are used in Equation (1) and Table 1 to sample damage
states. The models adopted in this study consider Permanent
Ground Displacement (PGD) as their intensity measure.

The expected permanent ground displacement due to liq-
uefaction is calculated based on the methodology proposed
by Joyner & Boore (1988), which is based on the soil lique-
faction susceptibility indicator presented by Youd & Perkins
(1987) and the ground motion attenuation relationship devel-
oped by Sadigh et al. (1986), which calculates the expected
PGD for a specific site. To calculate the liquefaction suscep-
tibility, the Chilean geological map (SERNAGEOMIN, 2003)
is used and is related to susceptibility categories described by
Youd & Perkins (1987).

TABLE 3 Parameters of log-normal fragility curves

Type of Assets Slight Moderate Severe
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

Bridges (Basöz &
Mander, 1999) 3.9 0.2 3.9 0.2 13.8 0.2

Tunnels (G&E,
1994) 6 0.7 12 0.7 60 0.5

Multi-lane (NIBS,
2004) 12 0.7 24 0.7 60 0.7

Two-lane (NIBS,
2004) 6 0.7 12 0.7 24 0.7

To evaluate the effect of physical damage on the road infras-
tructure, it is necessary to relate the damage states to a reduc-
tion in traffic capacity or speed. For Multi-lane highways, there
is a reduction in traffic capacity. The factors are adapted from
the values proposed by Shiraki et al. (2007) and Cartes (2017),
which are 25% of reduction for slight damage, 50% for mod-
erate damage and 100% of traffic capacity reduction for severe
damage. On the other hand, for two-lane highways, the model
considers a speed reduction of 55% for slight and moderate
damage according to the values empirically observed by Hua
et al. (2019) in work zones on these types of highways. The
model considers a 100% speed reduction for severe damage.
As described, the model considers the same speed reduction
for slight and moderate damage based on the assumption that
if a road has slight damage, the affected lane requires a tem-
porary closing to remove debris. Hence, there is a need for a
temporary work zone as well as the moderate damage.

3.4 Travel time due to seismic hazard
The incremental assignment algorithm (ITA), first proposed by
Martin & Manheum (1965), has been used in this study for its
simplicity, convergence on simple networks, as the case study,
and reduced computational time. This algorithm involves load-
ing a portion of the O-D flows in each iteration and travel times
updates for each link. For each iteration, the algorithm finds
the shortest path between a specific pair of nodes and assigns
the flow respectively. Then, the travel times for the links are
updated according to equations (7) and (8). Results obtained
with the ITA and the MSA were compared for three seis-
mic scenarios, considering convergence, computational effort
and resulting travel times of the models. MSA was carried
out using the algorithm proposed by Kumar (2019). Results
present differences lower than 10% in terms of travel times for
both routes. Computational times per seismic scenario, how-
ever, were 500 seconds for MSA and less than 2 seconds for
ITA to converge. For the 50,000 seismic scenarios and 5,000
risk cases considered in the sensitivity analysis MSA takes
considerably more time than ITA, reason why the latter was
considered for the risk and sensitivity analyses.

For the evaluation of multi-lane roads, equation 7 is used
according to HCM (2016). For two-lane roads, equation 8 is
used, which includes a factor that depends on the flow distri-
bution in both directions and no-passing zones. However, the
use of cost functions that integrates the flow of both directions
to model asymmetries has been omitted (we only consider the
factor of equation 8) due to the lack of calibrated models for
the study area.

The evaluation of the network performance is based on the
simulation of 50,000 seismic realizations. The code was devel-
oped on Python and all simulations were performed on Ubuntu
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Server 16.04 with Intel(R) Xeon(R) CPU E5-2660 processors.
The simulations, i.e. the 50,000 scenarios, took 48.5 seconds
using 50 cores. Figure 4 shows the results of the network
performance, measured as travel times between the cities of
Santiago and Valparaiso for the different simulations.

Figure 4 a shows the distribution of the Expected Travel
Times obtained from the simulations with respect to the earth-
quake magnitude. It is clear that for magnitudes lower than 7.0
Mw there is almost no travel delay. For higher magnitudes,
however, an exponential distribution was adjusted in order to
estimate the effect of the magnitude in the expected travel time.
For each one of the three magnitude ranges presented in Figure
4 b, the CDF was calculated, which allows us to quantify the
effect of the earthquake magnitude in the network. From this
analysis, the mean travel time for the three magnitude ranges,
from lowest to the highest, are 1.42 hrs, 3.98 hrs and 6.9 hrs
respectively. However, while this analysis is helpful in under-
standing the earthquake effect on the system given a certain
magnitude range, this does not consider the hazard recurrence.
It is necessary to highlight that the results obtained in Figure 4
represent systemic consequences for the simulated set of earth-
quakes, i.e. earthquakes with epicenters closer than 500 km to
at least one component of the network. Changing the region
where epicenters are sampled would alter the distributions of
Figure 4 . On the other hand, a travel time comparative anal-
ysis was made between Santiago - San Antonio and Santiago
- Valparaiso. Figure 5 shows a comparative analysis between
the mean annual frequencies of exceedance for expected travel
times between these two urban areas.

The curves conceptually show that network redundancy,
in terms of alternative routes, is a determining factor when
assessing risk, a fact that is reflected in the shape of the curves.
The route between Santiago and San Antonio has only two
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FIGURE 5 Mean annual frequencies of exceeding different
levels of average travel times for the Santiago - San Antonio
and Santiago - Valparaiso urban areas.

totally independent roads (without common links). On the
other hand, the route connecting Santiago and Valparaiso has
three completely independent routes and several other routes
that allow reassigning the flow to reach the destination. Conse-
quently, the high expected travel times between Santiago and
Valparaiso are reached with seismic events that are much less
frequent than those required for Santiago-San Antonio. For
example, expected travel times of 5 hours are reached with a
mean annual frequency of 3.56 ⋅ 10−3 for Santiago-Valparaiso
and 5.54 ⋅ 10−3 for Santiago-San Antonio, which correspond
to return periods of 280 and 180 years, respectively.

The impacts of increases in travel time can be quantified in
terms of the cost of time of each vehicle in the network. For

FIGURE 4 Road network performance for simulated seismic realizations for Santiago - Valparaiso
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each seismic scenario, the total cost of the network was calcu-
lated according to the costs of time proposed by MDS (2021),
which correspond to 20.45 USD for passenger cars, 12.47 USD
for trucks and 235.5 USD for inter-urban buses. Figure 6
shows the mean frequency of exceedance of over-costs for the
road network travel time delays for one day.
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FIGURE 6 Mean annual frequencies of exceeding different
road network over-costs due to travel time delays.

The applied traffic assignment model does not consider the
effect of the variation of the origin-destination matrix as a
result of a natural event and assumes that these values are
static over time. Therefore, the obtained results do not repre-
sent the traffic phenomenon immediately after the event, but
they do represent the operational effects on the interurban road
network once the origin-destination matrix has been reestab-
lished, but the road infrastructure has not been recovered. A
more detailed study of the variations of post-event origin-
destination matrices is required to seize the systemic effect
immediately after the natural event. A further approach of the
transportation model is related to the origin-destination matri-
ces considering the Annual Average Daily Traffic (AADT);
consequently, this application does not reflect the time and
seasonal effects of each one of the events. One way to incorpo-
rate these uncertainties is through a stochastic simulation that
samples time-dependent origin-destination matrices.

3.5 Topological analysis of the network
To better analyze the effect of topology in terms of redun-
dancy in the network and the effect in travel time delays, the
model was applied to two cases: (1) the redundant network
(see Figure 2 ); and (2) direct routes only. Figure 7 shows the

routes considered as the direct from Santiago to San Antonio
and Valparaiso.

FIGURE 7 Road network without redundancy

Figure 8 summarizes the results of the redundancy anal-
ysis, representing the mean annual frequency of exceedance
curves for the connections (a) Santiago - San Antonio and (b)
Santiago - Valparaiso. The results show that the connectivity
between Santiago and San Antonio has low redundancy and
that the seismic hazard effects are quite similar if one considers
only the direct route instead of all routes.

On the other hand, Figure 8 b shows the redundancy effect
for Santiago – Valparaiso. In this case, the curve without redun-
dancy reaches an asymptote because the travel time between
both cities tends to infinity without decreasing the frequency
of the seismic event. This occurs when an asset of the direct
route presents severe damage (total traffic interruption), and
since there are no alternative routes, there can be no traffic
reassignment. If alternative routes are present, there is traf-
fic reassignment, and the frequency of events continues to
decrease while increasing expected travel times.

The obtained results demonstrate that redundancy in both
networks plays a key role when evaluating the travel time
delays as a result of each seismic scenario. The travel times for
both routes (Santiago-San Antonio and Santiago-Valparaiso),
under free-flow traffic conditions, are similar. However, when
considering seismic scenarios, the network connecting Santi-
ago and San Antonio presented greater susceptibility to travel
time delays, due to the fact that it has few alternative routes
and the flow distribution induced a high cost (in terms of travel
time) for the links connecting both locations. These results
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FIGURE 8 Redundancy effect on the road network

suggest that the risk of a road network exposed to a natural
hazard is highly dependent on the interaction among the ele-
ments, represented by the existence of redundant roads; if there
is a flow distribution possibility, the effect on travel times is
reduced.

4 SENSITIVITY ANALYSIS AND
UNCERTAINTY QUANTIFICATION

Once the risk has been computed for the road network with
the respective redundancy analysis, it is necessary to evalu-
ate the incidence of each of the parameters described above
on the total risk. On the other hand, the propagation of uncer-
tainty behind the models is quantified. This section evaluates
the incidence of the parameters and quantifies the uncertainty
of the model described above for the road network. However,
this model can be applied to quantify uncertainty in any type
of network.

4.1 Polynomial Chaos Expansion method
Polynomial chaos expansion (PCE) models have gained great
popularity in recent years due to their efficiency in global sen-
sitivity analysis with multivariate output (Garcia-Cabrejo &
Valocchi, 2014). These models have been applied to recent
engineering problems (e.g., Hariri-Ardebili & Sudret, 2020;
Hurtado et al., 2017; Ni et al., 2019). This meta-model consists
of approximating the output of a system by using a polynomial
expansion that combines the input parameters using a polyno-
mial basis of functions. A presentation of the method can be
found in Sudret (2008). In essence, the expansion defines an
input random vector 𝑿 =

{

𝑋1, 𝑋2,… , 𝑋𝑀
}

that represents

𝑀 random input variables. The PCE method applied to the
output 𝜆𝑂𝑉 (𝑜𝑣) may be expressed by

𝜆𝑂𝑉 (𝑜𝑣,𝑿) =
∑

𝛼∈ℕ𝑀

𝑦𝛼(𝑜𝑣)Ψ𝛼(𝑿) (11)

where 𝑦𝛼 are the coefficients of the polynomial function andΨ𝛼
are the basis functions. The sum considers an infinite series of
polynomial functions, which is truncated in practice. Addition-
ally, the use of a multivariate orthonormal polynomial basis
with respect to the multivariate probability distribution of the
input variables, 𝑓𝑿(𝒙), implies that

𝑦𝛼(𝑜𝑣) = ∫
Ω

𝜆𝑂𝑉 (𝑜𝑣,𝒙)Ψ𝛼(𝒙)𝑓𝑿(𝒙) d𝒙 (12)

where Ω is the space of all input parameters. Notice that the
calculation of the coefficients 𝑦𝛼(𝑜𝑣) requires the evaluation of
𝜆𝑂𝑉 , which is the function that needs to be approximated.

For the truncated PCE model used herein, six random vari-
ables were considered: the median values (𝜇) of the fragility
curves for each type of structure (bridge, tunnel, single and
multi-lanes), the road capacity for moderate damage, and the
volume traffic ratio. These parameters are considered indepen-
dent, and their distributions and polynomial basis are presented
in Table 4 .

The coefficients for each mean rate of exceedance of the
expected travel time were obtained using the UQLab library
(Marelli & Sudret, 2014) by sampling 5,000 points (each eval-
uation requires the same 50,000 seismic scenarios) and using a
least-angle regression methodology to estimate a sparse trun-
cated PCE (Blatman & Sudret, 2011). The maximum order
of the truncated PCE is set at 14. This computation took
around 3 days for the evaluation of the 5,000 points, and 1.5
days for the PCE coefficients calculation considering 1,000
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TABLE 4 Meta-model input parameters

Variable Description Distribution Polynomial basis

𝛼1
Multiplier factor of the median value

𝑈 (0.5, 1.5) Legendrefor bridge fragility curves

𝛼2
Multiplier factor of the median value

𝑈 (0.5, 1.5) Legendrefor single lane fragility curves

𝛼3
Multiplier factor of the median value

𝑈 (0.5, 1.5) Legendrefor tunnel fragility curves

𝛼4
Multiplier factor of the median value

𝑈 (0.5, 1.5) Legendrefor multi lane fragility curves

𝐷𝑚𝑜𝑑
Capacity reduction factor

𝑈 (0.25, 0.75) Legendrefor moderate damage state

𝑉
Traffic volume ratio with

𝑁(1, 0.082) Hermiterespect to the mean annual volume

points for each mean frequency of exceedance curve. The pre-
cision of the PCE model was evaluated using the leave-one-out
(LOO) cross-validation error and is presented in Figure 9 . The
largest estimated error is less than 5.3%, which is considered
acceptable.
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FIGURE 9 LOO cross validation of the truncated sparse PCE
model for both cases.

4.2 Sensitivity analysis and uncertainty
quantification
The truncated sparse PCE model obtained is used in two differ-
ent analyses. First, a sensitivity analysis to estimate the impact
of each input parameter in the variability of the output. And
secondly to quantify the uncertainty of the output due to the
random nature of the input parameters.

For the sensitivity analysis, the Sobol method was used,
which quantifies the ratio of the variance of each input param-
eter to the variance of the final result (Sobol, 1993). The Sobol
index for an input parameter 𝑋𝑖 is defined by

𝑆𝑖 =
Var(E[𝜆𝑂𝑉 |𝑋𝑖])

Var(𝜆𝑂𝑉 )
(13)

which represents the ratio between the variance of the expected
value of output given a value of 𝑋𝑖 and the total variance
of the model. This analysis is done for all input parameters
and the interactions between them (second and higher order
Sobol indices). Additionally, Sudret (2008) showed that the
Sobol indices of a truncated PCE model can be established
analytically.

Figure 10 shows the evolution of the first order Sobol
indices for the expected travel time in both cases, Santiago
- San Antonio and Santiago - Valparaiso. In both cases, the
parameter that has the most impact on the results is 𝛼4, which
relates to the fragilities of multi-lane highways. This was
expected since the direct routes between Santiago and the two
ports are multi-lane, and any failure of these two routes implies
detours and travel time delays. The fragility curve parameters
associated with other types of assets have a negligible contribu-
tion to the overall variance. The main difference in both routes
is the contribution of 𝐷𝑚𝑜𝑑 and 𝑉 along with the expected
travel time. For the pair Santiago - Valparaiso, the parameter
𝑉 is more relevant than 𝐷𝑚𝑜𝑑 and that could be explained by
the redundancy effect shown in Figure 8 . Indeed, Santiago -
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Valparaiso has more redundancy, and hence the 𝐷𝑚𝑜𝑑 param-
eter has a lower contribution than it does for the pair Santiago
- San Antonio. In the latter, there are more independent routes
between the two cities and the traffic could be reassigned in
case of capacity loss.

The relevance of one factor over others reflects the behavior
of the particular network. For example, as presented in Figure
10 , traffic volume is more relevant on the Santiago - Val-
paraíso route, being more dependent to hourly and monthly
variations. To better address the potential effects of hourly vari-
ations, the application of a dynamic traffic analysis would be
adequate if accurate data is available. To emulate the effect of
a peak hour and an off-peak hour scenarios, the demand was
modified by +/- 50% and then the risk curves were modeled.
The variation of the mean annual frequancy of exceedance as a
result of traffic changes is approximately 15% more in the case
of Santiago - Valparaíso. The three different scenarios show
the relevance of the traffic level in the Santiago – Valparaíso
route in accordance to the sensitivity analysis.
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FIGURE 10 Graphical representation of the first order Sobol
indices for routes (a) Santiago - San Antonio, and (b) Santiago
- Valparaiso. Each color represents the contribution of the cor-
responding parameter to the total variance of the output. The
white area corresponds to higher order Sobol indices contribu-
tion.

Furthermore, uncertainty quantification was performed by
evaluating the truncated sparse PCE model with 20,000 sam-
ples of the input parameters. The obtained distributions for
the risk curves given the uncertainties of the input parameters
are presented in Figure 11 for both Santiago - San Antonio
and Santiago - Valparaiso cases. The coefficient of variation

for the San Antonio route decreases from 25.5% to 22.8%,
but increases from around 17.5% to 31% in the case of Val-
paraiso. This is seen by percentile intervals that are almost
constant in the San Antonio case while they increase in the
Valparaiso case. This difference is explained by the variation
in the relevance of each parameter along the travel time pre-
sented in Figure 10 , where the impact on travel times of the
fragility curves for multi-lane highways and the capacity loss,
are almost constant. In the case of Valparaiso, the most influ-
ential parameters are the fragilities for multi-lane highways,
capacity loss factor and the traffic volume, which are strongly
related to the expected travel time, thus generating uncertainty
in the total risk.

2 3 4 5 6 7 8 9 10
Expected Travel Time [hr]

10 3

10 2

M
ea

n 
fre

qu
en

cy
 o

f e
xc

ee
da

nc
e 

O
V
 [1

/y
ea

rs
] Santiago - San Antonio

Santiago - Valparaíso

FIGURE 11 Risk curves for the expected travel time for San-
tiago - San Antonio and Santiago - Valparaiso. Solid lines are
the median values, dashed lines the mean values, darker areas
the 25-75 percentile intervals and lighter areas the 5-95 per-
centile intervals.

5 CONCLUSIONS

This research presents a probabilistic approach to estimate the
earthquake risk of a road network. The model estimates the
operational consequences of this single natural hazard in terms
of travel times. The model was applied to the seismic risk of a
road network in central Chile, obtaining expected travel time
between the capital Santiago and the two largest ports in the
country, Valparaiso and San Antonio.

The expected travel time between these nodes is controlled
by the redundancy of the network. The connection Santiago
– Valparaiso has more independent paths, and more redun-
dancy than the connection Santiago – San Antonio. As shown
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in Section 3.5, the latter connection presents greater suscepti-
bility to increase travel time due to seismic events. Therefore,
redundancy plays a key role in reducing the risk in travel times
for this road network.

A sensitivity analysis was carried out to assess the impact
of six parameters on the estimated seismic risk. The most rel-
evant parameter is the fragility of multi-lane highways. These
results may have direct policy implications. For example in
the Santiago - San Antonio connection, where fragility and
capacity have greater relevance, is indicative of the need to
strengthen infrastructure and network redundancy, while for
the connection Santiago - Valparaiso, where the traffic volume
parameter is relevant, policies should focus on controlling traf-
fic levels since there is more redundancy, which decreases the
negative consequences produced by the physical failure. How-
ever, as the sensitivity analysis showed, both routes are highly
dependent on multi-lane highway fragility, which is basically
explained because the main routes that connect Santiago and
the ports are multi-lane highways.

The study can be used to evaluate the effectiveness of dif-
ferent mitigation strategies applied to road infrastructure and
the effects in travel time, as well as the identification of crit-
ical links, need for redundancy and the analysis of capacity
improvements. The model can also be used to estimate mit-
igation and restoration costs, as well as user costs resulting
from increased travel time. Furthermore, the model can also
be used for the risk assessment of new road projects in the net-
work. As demonstrated in the study, redundancy is essential to
decrease the impact of earthquakes. Therefore, the risk anal-
ysis presented in this study could support the feasibility of a
new project in order to reduce the impact of natural hazards.

This study also revealed the need to expand research in
different areas. One of them is the estimation of the origin-
destination matrices immediately after a natural event since the
present study assumed that trips did not change as a conse-
quence of the earthquake and, hence, it was not able to capture
the change in demand, which could modify the operational
consequences on the network. Results showed that traffic vol-
ume is a key factor in the evaluation of travel time delays. The
research could also be expanded in terms of traffic modeling
with other assignment algorithms that may integrate asymme-
tries in two-lane roads and in terms of hourly variations during
peak hours through a dynamic traffic assignment (DTA). The
use of dynamic analysis is critical when there are variations
in flow throughout the day. For example, in urban areas that
present peak. Another source of future research is the applica-
tion of the model in urban environments and the integration of
a congestion model.

Travel time delays between the locations defined in each
seismic scenario have different causes. One of the main factors
is the quality of fragility functions used in the study and the

intensity measures considered. This study adopted the func-
tions proposed by different authors in the literature; however,
these functions were calibrated to meet local conditions and
may not necessarily represent the fragility of each asset con-
sidered in this study. On the other hand, different intensity
measures may be associated with different failure mechanisms.
This research uses only permanent ground deformation and
neglects failures of road infrastructure caused by ground and
spectral accelerations. These models were taken due to the lack
of fragility functions for road assets specifically calibrated for
Chile.

Finally, this model was developed for seismic hazard. How-
ever, it could be used with hazards such as volcanic or hydro-
meteorological events. Extensions to other hazards require
infrastructure fragility curves, hazard recurrence models and
attenuation models to estimate the hazard intensity fields.
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