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Summary

Earthquake response spectral ordinates vary significantly with changes in orienta-
tion within the horizontal plane. This variation is characterized probabilistically in
this study using a large database of recorded earthquake ground motions. For each
ground motion record, response spectral ordinates are computed in all horizontal ori-
entations as a function of the rotation angle with respect to the azimuth of maximum
response and then normalized by (1) the maximum and (2) the median spectral ordi-
nate from all these orientations. Nonlinear regression models are then fitted to the
means, standard deviations, and correlations of both ratios, as a function of rotation
angle. To achieve a more complete probabilistic description, probability distributions
are fitted to both ratios at each rotation angle. These results can be used for several
probabilistic seismic hazard computations, such as the sampling of response spectral
ordinates at specific orientations within the same site.
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1 INTRODUCTION

For engineering purposes, the intensity of earthquake ground motion is usually characterized by 5% damped pseudo-acceleration
response spectral ordinates. Although this intensity varies significantly with changes in orientation within the horizontal plane,
a phenomenon known as ground motion directionality, a single representative intensity has been used in most applications,
such as in ground motion models (GMMs) and earthquake-resistant design. This scalar measure of ground motion intensity has
commonly been constructed by combining the intensities in the two horizontal as-recorded sensor orientations by computing,
for example, their geometric mean. However, recent studies and GMMs have favored intensities that are independent of sensor
orientation1,2. For example, the median and maximum intensity of all horizontal orientations are known as RotD50 and RotD100,
respectively2, with the numbers referring to percentiles of the distribution. The latest GMMs tend to favor the use of RotD503,
whereas building codes in the United States use RotD1004. Although using measures of central tendency such as RotD50 or the
geometric mean of the spectral ordinates of the two as-recorded horizontal components may be adequate for earthquake-resistant
design purposes if the ground motion directionality is small, its use becomes questionable if the directionality is large5,6. For
example, in 1 s oscillators, the intensity in the orientation of maximum response is, on average, approximately 55% larger than
the one occurring in the perpendicular direction7, therefore ground motion directionality is not small and requires more attention
than the one that has been given in the past.

Ground motion directionality has usually been studied to define empirical relations between different scalar definitions of
horizontal intensity8–12. However, relatively little attention has been given to the characterization of ground motion intensity
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at arbitrary orientations within the horizontal plane. Hong and Goda13 studied ground motion directionality by examining the
variation of spectral accelerations as a function of the rotation angle from the orientation in which maximum intensity occurs
(i.e., the orientation where RotD100 occurs) for 5% damped single-degree-of-freedom (SDOF) systems with periods of vibration
of 0.2 and 1.0 s. To compare the directionality of records with different intensities, they normalized the spectral accelerations
with respect to their maximum value reached in any orientation within the horizontal plane (RotD100). They then proposed
a model for the mean of this ratio as a function of the rotation angle using a database of 592 records. Moreover, they fitted
a probability distribution for the specific case of orientations that are orthogonal to the direction of the maximum intensity.
More recently, Shahi and Baker10 provided mean estimates of the same ratio but normalized by RotD50 instead of by RotD100,
because RotD50 is used in recent GMMs and therefore the ratio becomes more practical to combine with GMMs.

This study extends the works of Hong and Goda13 and Shahi and Baker10 to provide a detailed probabilistic characterization
of the same ratios used by these researchers, i.e., the ratios between the 5% damped spectral accelerations at any orientation
within the horizontal plane and the maximum (RotD100) or median (RotD50) intensity for periods of vibration between 0.01
and 10 s. Nonlinear regression analyses are used to develop models for the means, standard deviations, and correlations of both
ratios using the NGA-West2 database, which contains records from shallow crustal earthquakes in active tectonic regions14.
Moreover, probability distributions are fitted to both ratios for use in more advanced applications.

2 GROUND MOTION DIRECTIONALITY

Ground motion intensity is commonly characterized by response spectral ordinates, which correspond to the peak response
(maximum of the absolute value of the response) of 5% damped linear elastic single-degree-of-freedom (SDOF) oscillators.
This peak response may vary significantly with changes in orientation within the horizontal plane. For example, Figure 1 shows
the relative displacement trace of an SDOF oscillator with a natural period of vibration of 1 s subjected to recorded horizontal
components of an example ground motion, which was recorded during the 1999 MW 7.1 Hector Mine earthquake at the Riverside
County Fairgrounds station (i.e., record #1792 from the NGA-West2 database14). The orientation where the maximum peak
response of the oscillator occurs is known as the major response axis13, which for this example ground motion occurs at an
azimuth of 229◦. The intensity at this orientation of maximum peak response is known as RotD1002, and is denoted here as
𝑆𝑑RotD100 to indicate that it corresponds to a spectral displacement. The response history of the oscillator at each orientation
is then used to compute the variation of spectral displacement with changes in orientation and are also presented in Figure 1
using a polar representation (i.e., the spectral displacement at any orientation is given by the distance to the origin). Note that
the spectral displacement repeats every 180◦ because of the absolute value used in its computation.

To compare the directionality of different ground motions, Hong and Goda13 studied pseudo-spectral accelerations as a func-
tion of the angle 𝜙 from the major response axis, 𝑆𝑎(𝜙), and normalized them by their maximum, 𝑆𝑎RotD100, defining the
ratio:

𝜂(𝜙) =
𝑆𝑎(𝜙)
𝑆𝑎RotD100

=
𝑆𝑑(𝜙)
𝑆𝑑RotD100

(1)

which can also be computed using spectral displacements because both intensities only differ by a constant factor (i.e., the
square of the natural frequency). Figure 2a shows the 𝜂 ratios for a period of 1 s of 100 example ground motion records, which
also includes the record previously shown in Figure 1. The number of ground motion records in this figure is kept relatively
low on purpose in order to allow a better visualization of the variation of intensities with changes in rotation for individual
records. Note that for any ground motion, there are two lines in this figure that correspond to orientations that are clockwise and
counterclockwise away from the major response axis. By definition, 𝜂 is always lower than or equal to 1. Moreover, the lower
bound of 𝜂 is cos(𝜙), which corresponds to the case of a fully polarized ground motion (i.e., one where motion takes place only
along a single orientation). It is interesting to note that there is significant record-to-record variability of 𝜂(𝜙) with some ground
motions showing small directionality (i.e., 𝜂(𝜙) values close to 1) while a significant number show a strong directionality (i.e.,
𝜂(𝜙) values close to cos(𝜙) of the fully polarized case) highlighting the need for a probabilistic characterization of this aspect
of earthquake ground motions.

Given a value of𝑆𝑎RotD100, the 𝜂(𝜙) ratios can be used to compute pseudo-spectral accelerations at any orientation𝜙. However,
most of the recent GMMs use RotD50 to define their intensity instead of RotD100, and therefore seismic hazard curves for
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FIGURE 1 Relative displacement trace of an SDOF oscillator of period 1 s subjected to an example bidirectional horizontal
ground motion record along with the variation of spectral ordinates with changes in orientation.
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FIGURE 2 Pseudo-spectral acceleration at a rotation angle 𝜙 from the major response axis for an oscillator with a period of 1 s
subjected to 100 recorded ground motions when normalized by (a) 𝑆𝑎RotD100 and (b) 𝑆𝑎RotD50.

RotD100 are not readily available. Thus, this work also studies a similar ratio that is normalized by 𝑆𝑎RotD50, which is denoted:

𝜈(𝜙) =
𝑆𝑎(𝜙)
𝑆𝑎RotD50

=
𝑆𝑑(𝜙)
𝑆𝑑RotD50

(2)

The 𝜈 ratios of the same 100 example ground motions are presented in Figure 2b. The particular case of 𝜈(0◦) =
𝑆𝑎RotD100∕𝑆𝑎RotD50 has been studied previously10,11 and its lower and upper bounds are 1 and

√

2, respectively2. The lower and
upper bounds of 𝜈 for other rotation angles are significantly more complicated to derive, and hence their derivation is presented
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in Appendix A. Again, a significant record-to-record variability exists on 𝜈(𝜙) with several records having ratios close to the
upper bound for rotation angles smaller than 30◦.

3 PROBABILISTIC CHARACTERIZATION OF DIRECTIONALITY

The directionality of earthquake ground motion intensities is studied here using a subset of the NGA-West2 database, which
contains ground motion records from shallow crustal earthquakes in active tectonic regimes worldwide14. The records were
selected using the following criteria: (1) originated from earthquakes of magnitude greater than or equal to 5; (2) recorded in
NEHRP site classes B, C, and D; and (3) have reasonably free-field conditions according to the criteria used by Boore et al.3.
This resulted in 5,065 pairs of horizontal ground motions, which were used to compute the 𝜂(𝜙) and 𝜈(𝜙) ratios defined in the
previous section for rotation angles varying from -90◦ to 90◦ every 0.5◦. Both ratios were computed using spectral ordinates
at 21 periods ranging from 0.01 to 10 s, which correspond to those used to define the multi-period design response spectrum
in the latest NEHRP Recommended Seismic Provisions for New Buildings and Other Structures15. In total, a little more than
thirty-eight million 𝜂 and 𝜈 ratios were computed. At each period, the statistics were computed for the natural logarithm of the
ratios because GMMs usually assume that spectral accelerations follow a lognormal probability distribution.

The geometric means of the ratios, 𝜇𝜂 and 𝜇𝜈 , are presented in Figure 3 for five different periods, and are related to the mean
of the logarithmic ratios by an exponential:

𝜇𝜂(𝜙) = exp(E [ln 𝜂(𝜙)]) (3)

where 𝐸[⋅] represents the expectation function. As expected, the geometric means of both ratios monotonically decrease as the
orientations separate from the major response axis. Moreover, the rate at which the ratios decrease is higher as the period of
vibration increases, indicating that spectral ordinates become, on average, more polarized as the period of vibration increases
and that significantly larger polarizations occur for long periods oscillators than those found by Hong and Goda13 for the 1.0 s
oscillators. In particular, for periods longer than 5 s, the intensity along the major response axis is, on average, approximately
twice as large as the intensity in the perpendicular direction. Nonlinear regression analyses were conducted by using the following
functional form in order to develop a model to estimate the geometric mean:

�̂�(𝜙) = 𝐶1 + 𝐶2𝑒
−𝐶3𝜙2 (4)

where 𝜙 is the angle from the major response axis (in radians) and coefficients 𝐶1, 𝐶2, and 𝐶3 were obtained independently
for each period of vibration and for both ratios of interest (i.e., 𝜂 and 𝜈) by solving a nonlinear least-squares problem using the
Levenberg–Marquardt algorithm16. Coefficients 𝐶1, 𝐶2, and 𝐶3 are given in Tables B1 and B2 of Appendix B to estimate the
geometric mean of 𝜂 and 𝜈, respectively. The resulting regression models are presented in Figure 3 and compared to the empirical
data, showing that both models fit both ratios very well for all combinations of period and rotation angles, 𝜙. Geometric means
of intensities equal to the RotD50 intensity occur at rotation angles between 39◦ and 43◦ for periods between 0.1 and 10 s.

The next statistic that was studied was the standard deviation of the logarithmic ratios, 𝜎ln 𝜂 and 𝜎ln 𝜈 , which are presented in
Figure 4. Because, by definition, 𝜂 ratios are spectral intensities normalized by the maximum intensity, then 𝜂(0◦) = 1 for all
ground motions, and therefore the standard deviation of ln 𝜂 is zero at the major response axis (i.e., 𝜙 = 0◦). As the angle of
rotation with respect to the major response axis increases, 𝜎ln 𝜂 increases monotonically, which is also observed in Figure 2a. In
contrast, 𝜎ln 𝜈 remains relatively stable at roughly 0.08 up to a rotation angle of approximately 𝜙 = 20◦, then slightly decreases,
and then increases monotonically for rotation angles larger than approximately 𝜙 = 45◦. Thus, the smallest record-to-record
variability of 𝜈 occurs at a rotation angle of approximately 𝜙 = 45◦. Moreover, in both cases, the standard deviation is relatively
period insensitive up to an angle of approximately 𝜙 = 60◦, from which the long period oscillators start to have a higher standard
deviation.

Regression models were also fitted to 𝜎ln 𝜂 and 𝜎ln 𝜈 with the following function form:

�̂�ln(𝜙) =
𝐶4 + 𝐶5𝜙3 + 𝐶6𝜙4

1 + 𝐶7𝜙3 + 𝐶8𝜙4
(5)
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FIGURE 3 Geometric means of (a) 𝜂 and (b) 𝜈. Solid lines represent empirical data and dashed lines represent estimates obtained
with the regression model using Equation 4.
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FIGURE 4 Standard deviation of (a) ln 𝜂 and (b) ln 𝜈. Solid lines represent empirical data and dashed lines represent estimates
obtained with the regression model using Equation 5.

where 𝜙 is in radians and coefficients 𝐶4, 𝐶5, 𝐶6, 𝐶7, and 𝐶8 were again estimated independently for each period of vibration.
The resulting models are compared to the empirical results in Figure 4 showing that thy fit the data very well.

The final statistical measure that was studied was the Pearson correlation coefficient between the logarithm of the ratio at two
different angles 𝜙 and 𝜓 :

𝜌ln 𝜂(𝜙, 𝜓) =
Cov(ln 𝜂(𝜙), ln 𝜂(𝜓))
𝜎ln 𝜂(𝜙)𝜎ln 𝜂(𝜓)

(6)
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where Cov(⋅, ⋅) is the covariance between two random variables. Figure 5 shows the correlations of both ratios for different
combinations of both angles for oscillators with a period of vibration of 1 s. Both correlations are close to one if the angles are
close to each other and decrease as the rotation angles separate. However, 𝜌ln 𝜂 remains always positive whereas 𝜌ln 𝜈 becomes
negative when the angles are very separated. Note that 𝜌ln 𝜂 is undefined for𝜓 = 0◦ and𝜓 = 180◦ because ln 𝜂(0◦) and ln 𝜂(180◦)
have no uncertainty (they are always 0), and hence are not presented in Figure 5a.
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FIGURE 5 Correlations of (a) ln 𝜂 and (b) ln 𝜈 at two rotation angles 𝜙 and 𝜓 for a period of vibration of 1 s.

A relevant special case of the correlations of Equation (6) is when angles 𝜙 and 𝜓 are separated by 90◦ (i.e., the orientations
are orthogonal to each other), which is usually the case for the principal axes of buildings and many other types of structures.
These correlations are shown in Figure 6 for different periods, which shows that both are relatively constant throughout the range
𝜙. The values of 𝜌ln 𝜂 for orthogonal orientations tend to increase slightly as the period increases and are always relatively low,
with the correlation coefficient usually lower than 0.2. Thus, neglecting these correlations could be a reasonable simplifying
assumption. However, correlation 𝜌ln 𝜈 is more significant than 𝜌ln 𝜂 for orthogonal orientations, with its values always negative
and its mean value ranging from approximately -0.45 for a period of 0.1 s to -0.64 for 10 s. Given the relatively stable value
of 𝜌ln 𝜈 throughout the range of 𝜙, using a constant value that depends on period is a reasonable assumption. If more accurate
estimations are required, a regression model with the following functional form can be used:

�̂�ln 𝜈(𝜙, 𝜙 + 𝜋∕2) = 𝐶9 + 𝐶10𝑒
−𝐶11(𝜙−𝜋∕4)2 (7)

Figure 6b compares the correlation coefficients of ln 𝜈 estimated with Equation (7) to those of the data, showing that they fit
very well. Note that the correlations from Equation (7) are only for orthogonal orientation pairs and that no model is presented
for a generic pair of orientations due to its lower practical applicability since the great majority of structures have principal axes
that are orthogonal to each other. The coefficients of all fitted regression models (𝐶1-𝐶11) are presented in Tables B1 and B2 of
Appendix B and in the Electronic Supplement of this article.

For some applications, such as the simulation of realizations of spectral ordinates in different orientations, the full distribution
of 𝜂 and 𝜈 is necessary. Figure 7 shows the empirical distributions of the ratios for two vibration periods (0.1 and 1 s) at different
angles 𝜙. All ratios have upper and lower bounds that depend on 𝜙, as shown in Figure 2. A four-parameter beta distribution
was fitted to each combination of period and 𝜙 using maximum likelihood estimation. The probability density functions of these
fitted distributions are compared to the empirical distribution in Figure 7, showing a relatively good fit. Note that for 𝜂(0◦) the
probability density function becomes a Dirac delta function because by definition 𝜂 is always 1 at 𝜙 = 0◦. The parameters of
the fitted beta distributions are presented in the Electronic Supplement of this article.
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FIGURE 6 Correlations of (a) ln 𝜂 and (b) ln 𝜈 between two orthogonal horizontal orientations. Solid lines represent empirical
data and dashed lines in (b) represent estimates obtained with the regression model using Equation 7.
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4 NOVELTY AND SIGNIFICANCE OF RESULTS

Previous works that studied at least one of the two ratios presented here are shown in Table 1. Although values for the geometric
mean of 𝜂 and 𝜈 have already been presented by Hong and Goda13 and Shahi and Baker10, respectively, the rest of the statistics,
that is, the standard deviations, correlations, and probability distribution, have not been studied previously, except for a few
cases. One of these cases is when 𝜙 = 0◦, which leads to 𝜈 = 𝑆𝑎RotD100∕𝑆𝑎RotD50, whose logarithmic standard deviation has
been computed previously10,11. The other special case is for the 𝜂 ratio when 𝜙 = 90◦, whose probability distribution was fitted
by Hong and Goda13 at six periods between 0.1 and 3 s. The results and models presented in this work extend those of previous
studies and thus have a wider range of applicability.

TABLE 1 Previous works that studied the 𝜂 and 𝜈 ratios.

Ratio Property Hong and Goda13 Shahi and Baker10 Boore and Kishida11 This study

𝜂(𝜙)

𝜇𝜂(𝜙) ✓ - - ✓

𝜎ln 𝜂(𝜙) - - - ✓

𝜌ln 𝜂 - - - ✓

Distribution only 𝜙 = 90◦ - - ✓

Bounds ✓ - - ✓

𝜈(𝜙)

𝜇𝜈(𝜙) - ✓ only 𝜙 = 0◦ ✓

𝜎ln 𝜈(𝜙) - only 𝜙 = 0◦ only 𝜙 = 0◦ ✓

𝜌ln 𝜈 - - - ✓

Distribution - - - ✓

Bounds - only 𝜙 = 0◦ - ✓

The detailed probabilistic characterization of the orientation dependence of horizontal response spectra provided by this study
could be used in several future applications. For example, the statistics of the 𝜈 ratios could be used to simulate earthquake
response spectra at one or more orientations at the same site. These orientations could represent, for example, the two horizontal
principal axes of buildings, which are usually orthogonal. For a given earthquake scenario, the response spectral ordinate could
be computed by following these steps:

1. Compute 𝑆𝑎RotD50 using one or more of the several available GMMs that consider RotD503.

2. Define the orientation where 𝑆𝑎RotD100 occurs (i.e., the major response axis). Previous studies suggest that at sites that are
far away from the fault, the orientation of the major response axis can be considered to be uniformly distributed, whereas
at sites close to the rupture the major response axis tends to be closer to the fault normal orientation10.

3. Compute the angular differences between the major response axis and the orientations of interest (e.g., the two principal
axes of a structure).

4. Compute the response spectra at the orientations of interest. One option to achieve this is by modifying the logarithmic
mean and possibly also the logarithmic standard deviation obtained from the GMM using the expressions for the logarith-
mic mean and standard deviation of 𝜈(𝜙). Another option is the sample 𝑆𝑎RotD50 from a lognormal probability distribution
using the GMM and then multiply them by 𝜈(𝜙) ratios from the fitted distributions to obtain a realization of 𝑆𝑎(𝜙).

An interesting application of this procedure is regional risk assessment of buildings, where the orientations of the major response
axes at sites that are close to each other tend to be strongly correlated, especially at long periods17. Moreover, the orientation
of the principal axes of different buildings within a city also tend to be very similar because of regularities in street network
layouts. If all orientations of the maximum ground motion intensity are assumed to be equally likely, and therefore changing
from earthquake to earthquake with respect to the orientation of the principal axes of the buildings, the expected annual sum of
losses from all buildings should not be affected by these correlations because it corresponds to the sum of the expected annual
losses of the building, which are computed independently without the use of correlation. However, neglecting these correlations
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could lead to an underestimation of losses in individual events as well as of rare losses with small rates of occurrence (i.e., high
return periods) and an overestimation of frequent losses, similarly to what occurs when neglecting the spatial correlation of
ground motion intensities18.

5 CONCLUSIONS

The variation of response spectral ordinates with changes in orientation within the horizontal plane, typically referred to as
ground motion directionality, is characterized probabilistically and a new model to explicitly account for directionality is devel-
oped. The study of directionality of earthquake spectral responses is based on the use of a large database of ground motion
recordings. Two metrics are used to characterize ground motion directionality in which ratios between spectral ordinates within
the horizontal plane and normalized by their median (RotD50) or maximum (RotD100) values for all orientations, which are
commonly used orientation independent intensity measures. Several statistical properties of these ratios were studied, namely,
their geometric mean, logarithmic standard deviation, and correlation. Nonlinear regression models were fitted to each of these
statistics to simplify their future use. Furthermore, probability distributions were fitted to the studied ratios, which could be used
if full probabilistic characterization of directionality is required. These probabilistic characterizations can be used in the future
to simulate orientation-dependent ground motion intensities. One possible application of these results is for seismic risk assess-
ment of buildings, where current methods are based on orientation independent intensity measure (e.g., RotD50) and therefore
do not take into account the orientation of the principal axes of buildings.
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APPENDIX

A DERIVATION OF THE UPPER AND LOWER BOUNDS OF 𝜈(𝜙)

A convenient way to derive the bounds of the 𝜈 ratios is to use the 𝜂 ratios because their upper and lower bounds are 1 and cos(𝜙),
respectively. Figure A1 shows these upper and lower bounds of 𝜂 in dashed lines along with a possible variations of 𝜂 ratios
within the range of non-redundant angles 𝜙 ∈ [0◦, 180◦]. The objective is to find variations of 𝜂 that minimize and maximize 𝜈
at each value of 𝜙. Any possible variation must be between the bounds of 𝜂, i.e. | cos(𝜙)| ≤ 𝜂(𝜙) ≤ 1.

We start by deriving the lower bound of 𝜈. Let 𝑦 be the value of 𝜂 at a given angle of interest 𝜙 where we want to derive the
lower bound. The value of 𝑦 from the 𝜂 distribution that leads to the lower bound is unknown, therefore, here we consider the
minimum value of 𝜈 for all possible values of 𝑦 and then take the minimum:

𝜈min(𝜙) = min
𝑦∈[cos(𝜙),1]

𝑦
𝜂RotD50(𝜙, 𝑦)

(A1)

https://doi.org/10.1002/eqe.3654
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FIGURE A1 Variation of 𝜂 ratios that maximize 𝜂RotD50 for a given value of 𝜙 and 𝑦, for cases when (a) 𝜓 < 45◦ and (b)
𝜓 > 45◦.

where 𝜂RotD50 is the median value of the 𝜂 distribution (i.e., 𝜂RotD50 = 𝑆𝑎RotD50∕𝑆𝑎RotD100). Since the fixed value of 𝑦 corresponds
to the numerator of the ratio that is being minimized, the minimum value of the ratio occurs when the denominator, 𝜂RotD50(𝜙, 𝑦),
is maximized. To accomplish this, the variation of 𝜂 takes its highest possible value at each rotation angle, given that 𝜂(𝜙) = 𝑦,
as seen in Figure A1. To simplify the expressions, we make the change of variable 𝑦 = cos(𝜓), leading to:

𝜈min(𝜙) = min
𝜓∈[0,𝜙]

cos(𝜓)
𝜂RotD50(𝜙, 𝜓)

(A2)

The value of 𝜂RotD50 can then be computed in terms of 𝜓 :

𝜂RotD50(𝜙, 𝜓) =

{

1 if 𝜓 ≤ 45◦

cos(𝜓 − 45◦) if 𝜓 > 45◦
(A3)

Note that 𝜂RotD50 does not depend on 𝜙, only on 𝜓 , and that its value is 1 for 𝜓 < 45◦ because more than half of the rotation
angles have 𝜂 = 1. Solving the minimization problem defined by Equations (A2) and (A3) results in:

𝜈min(𝜙) =

⎧

⎪

⎨

⎪

⎩

cos(𝜙) if 𝜙 ≤ 45◦
cos(𝜙)

cos(𝜙 − 45◦)
if 𝜙 > 45◦

(A4)

where the value of 𝜓 that minimizes the ratio is always equal to 𝜙. In other words, the variation of 𝜂 that minimizes 𝜈 always
has 𝑦 = cos(𝜙).

The upper bound of 𝜈 can be found in a similar manner, but now by maximizing the ratio:

𝜈max(𝜙) = max
𝜓∈[0,𝜙]

cos(𝜓)
𝜂RotD50(𝜙, 𝜓)

(A5)

The variation of 𝜂 distribution that minimizes the denominator, 𝜂RotD50, for given values of 𝜙 and 𝑦 (or 𝜓) is shown in Figure A2.
An ideal case that generates this variation is a ground motion that is fully polarized in the 0◦ orientation, then stops until the
SDOF system finishes oscillating, and finally has the same fully polarized motion in the (𝜙− 𝜓) orientation. Depending on the
values of 𝜙 and 𝜓 there can be two cases, one where 𝜂RotD50 is below the left local minimum of 𝜂 (Case 1) and another where
𝜂RotD50 is above both local minima (Case 2). The cases that are associated with each combination of 𝜙 and 𝜓 are presented in
Figure A3a, with the limit between these two cases occurring when 𝜙 − 𝜓 = 45◦.
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FIGURE A2 Variation of 𝜂 ratios that minimize 𝜂RotD50 for a given value of 𝜙 and 𝑦, for the case when (a) 𝜙−𝜓 < 45◦ and (b)
𝜙 − 𝜓 > 45◦.
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cos( 45 )

2cos( )

F( ) 1
cos(22.5 )

FIGURE A3 (a) Values of 𝜓 that minimize 𝜈 for each for each rotation angle 𝜙. (b) Functions that define the minimum and
maximum value of 𝜈 as a function of 𝜙.

Case 1 occurs when 𝜙−𝜓 < 45◦ and the computation of 𝜂RotD50 is shown in Figure A2a. The value of 𝜂RotD50 in this case is:

𝜂(1)RotD50(𝜙, 𝜓) = cos
(

45◦ −
(𝜙 − 𝜓)

2

)

(A6)

Thus, the 𝜈 ratio for this case is given by:

𝜈(1)(𝜙, 𝜓) =
cos(𝜓)

cos (45◦ − (𝜙 − 𝜓)∕2)
(A7)
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To obtain the value of 𝜓 that maximizes 𝜈(1) (𝜓∗), we can take the partial derivative of 𝜈(1) with respect to 𝜓 as follows:

𝜕
𝜕𝜓

(

𝜈(1)(𝜙, 𝜓)
)

=
− sin(𝜓) cos (45◦ − (𝜙 − 𝜓)∕2) − cos(𝜓) sin(45◦ − (𝜙 − 𝜓)∕2)

cos2 (45◦ − (𝜙 − 𝜓)∕2)
(A8)

and then obtain the value of 𝜓 that makes the derivative equal to zero, which is given by:

𝜓∗ = 2 cos−1
⎛

⎜

⎜

⎝

√

1
2
− sin

(

𝜙
2

)

cos
(

𝜙
2

)

+ sin5∕3
(

𝜙
2

)

cos1∕3
(

𝜙
2

)

+ sin1∕3
(

𝜙
2

)

cos5∕3
(

𝜙
2

)

⎞

⎟

⎟

⎠

(A9)

If a simpler equation is desired for 𝜓∗, a very good fit is achieved with the following second degree polynomial:

𝜓∗ ≈ 0.276𝜙2 − 0.883𝜙 + 0.812 (A10)

where both 𝜙 and 𝜓∗ are in radians. Using any of these expressions in Equation (A7):

𝐹 (𝜙) =
cos(𝜓∗)

cos (45◦ − (𝜙 − 𝜓∗)∕2)
(A11)

Figure A3a shows the values of 𝜓∗ as a function of 𝜙. At angles lower than 𝜙1 ≈ 26.6◦, 𝜓∗ is larger than the upper bound of 𝜓
from the optimization problem (𝜙). Thus, the value of 𝜓 that maximizes 𝜈(1) is 𝜓 = 𝜙, and the upper bound of the 𝜈 ratio is:

𝜈max(𝜙) = 𝜈(1)(𝜙, 𝜙) =
cos(𝜙)
cos (45◦)

=
√

2 cos(𝜙), 𝜙 ∈ [0◦, 𝜙1] (A12)

At angles higher than 𝜙1, 𝜓∗ is within the bounds of the optimization problem. Thus, the upper bound of the 𝜈 ratio is given by:

𝜈max(𝜙) = 𝐹 (𝜙), 𝜙 ∈ [𝜙1, 𝜙2] (A13)

at least up to an angle 𝜙2, which is obtained by comparing this result with the one from Case 2.
Case 2 occurs when 𝜙 − 𝜓 > 45◦ and the computation of 𝜂RotD50 is shown in Figure A2b. In this case, the value of 𝜂RotD50

remains constant at:

𝜂(2)RotD50(𝜙, 𝜓) = cos (22.5◦) (A14)

Thus, the 𝜈 ratio for this case is:

𝜈(2)(𝜙, 𝜓) =
cos(𝜓)

cos (22.5◦)
(A15)

Since cos(𝜓) is a monotonically decreasing function in the range of interest (𝜓 ∈ [0◦, 90◦]), the maximum occurs at 𝜓 = 0◦

and has a value of:

𝜈(2)max(𝜙) =
1

cos (22.5◦)
(A16)

This solution is greater than 𝐹 (𝜙) for angle 𝜙 > 𝜙2 ≈ 51.4◦, and therefore corresponds to the upper bound of the 𝜈 ratio within
this range, which is given by:

𝜈max(𝜙) =
1

cos (22.5◦)
, 𝜙 ∈ [𝜙2, 90◦] (A17)
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Putting all together, the upper bound of the 𝜈 ratio is given by:

𝜈max(𝜙) =

⎧

⎪

⎨

⎪

⎩

√

2 cos(𝜙) if 0◦ ≤ 𝜙 ≤ 𝜙1

𝐹 (𝜙) if 𝜙1 < 𝜙 < 𝜙2

1∕ cos(22.5◦) if 𝜙2 ≤ 𝜙 ≤ 90◦
(A18)

Figure A3b summarizes the upper and lower bound of the 𝜈 ratio derived here.

B COEFFICIENTS OF THE FITTED REGRESSION MODELS

TABLE B1 Coefficients of the regression models for 𝜂.

Period (s) 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8

0.010 0.720 0.280 1.824 0 0.243 0.057 0.433 0.552
0.020 0.722 0.278 1.837 0 0.244 0.063 0.468 0.563
0.030 0.724 0.276 1.858 0 0.256 0.045 0.514 0.495
0.050 0.730 0.270 1.911 0 0.232 0.100 0.566 0.676
0.075 0.733 0.267 1.908 0 0.239 0.091 0.620 0.636
0.100 0.730 0.270 1.868 0 0.254 0.067 0.685 0.510
0.150 0.705 0.295 1.666 0 0.299 -0.057 0.501 0.104
0.200 0.682 0.318 1.537 0 0.303 -0.092 0.319 0.043
0.250 0.664 0.336 1.426 0 0.314 -0.112 0.336 -0.042
0.300 0.649 0.351 1.373 0 0.314 -0.135 0.172 -0.030
0.400 0.628 0.372 1.293 0 0.305 -0.130 0.096 0.001
0.500 0.617 0.383 1.252 0 0.299 -0.134 -0.008 0.035
0.750 0.597 0.403 1.181 0 0.297 -0.139 -0.063 0.045
1.000 0.588 0.412 1.168 0 0.289 -0.133 -0.100 0.068
1.500 0.572 0.428 1.118 0 0.298 -0.146 -0.102 0.042
2.000 0.557 0.443 1.076 0 0.293 -0.143 -0.152 0.068
3.000 0.543 0.457 1.046 0 0.300 -0.151 -0.152 0.054
4.000 0.519 0.481 1.006 0 0.282 -0.138 -0.203 0.086
5.000 0.492 0.508 0.937 0 0.290 -0.153 -0.264 0.089
7.500 0.342 0.658 0.705 0 0.273 -0.160 -0.464 0.161
10.000 0.278 0.722 0.638 0 0.266 -0.156 -0.523 0.195
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TABLE B2 Coefficients of the regression models for 𝜈.

Period (s) 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐶9 𝐶10 𝐶11

0.010 0.858 0.335 1.842 0.084 -0.335 0.366 -2.057 2.178 -0.469 0.056 9.292
0.020 0.860 0.333 1.855 0.084 -0.335 0.369 -2.056 2.203 -0.468 0.046 6.867
0.030 0.862 0.329 1.875 0.083 -0.316 0.350 -1.976 2.116 -0.478 0.055 5.929
0.050 0.867 0.321 1.927 0.083 -0.317 0.361 -1.921 2.179 -0.467 0.052 6.981
0.075 0.868 0.317 1.918 0.082 -0.303 0.351 -1.865 2.147 -0.487 0.064 2.870
0.100 0.865 0.320 1.877 0.081 -0.283 0.341 -1.606 1.977 -0.478 0.048 5.978
0.150 0.842 0.352 1.671 0.082 -0.291 0.320 -1.679 1.751 -0.501 0.061 5.851
0.200 0.821 0.383 1.548 0.084 -0.310 0.328 -1.692 1.665 -0.512 0.074 10.330
0.250 0.802 0.406 1.434 0.084 -0.296 0.321 -1.406 1.436 -0.518 0.063 9.365
0.300 0.787 0.426 1.385 0.084 -0.298 0.317 -1.491 1.441 -0.541 0.119 8.970
0.400 0.767 0.455 1.308 0.086 -0.306 0.320 -1.446 1.362 -0.540 0.116 13.316
0.500 0.756 0.468 1.268 0.086 -0.314 0.319 -1.526 1.369 -0.567 0.153 15.430
0.750 0.734 0.496 1.198 0.085 -0.313 0.320 -1.508 1.349 -0.562 0.130 12.225
1.000 0.726 0.508 1.185 0.085 -0.312 0.318 -1.464 1.295 -0.553 0.128 15.103
1.500 0.708 0.530 1.136 0.085 -0.306 0.315 -1.398 1.242 -0.557 0.121 13.127
2.000 0.692 0.548 1.093 0.085 -0.311 0.320 -1.398 1.235 -0.576 0.156 11.671
3.000 0.677 0.567 1.062 0.086 -0.316 0.325 -1.359 1.198 -0.562 0.084 5.956
4.000 0.652 0.601 1.025 0.085 -0.305 0.317 -1.225 1.083 -0.565 0.122 11.439
5.000 0.619 0.634 0.952 0.086 -0.297 0.307 -1.097 0.946 -0.590 0.153 14.799
7.500 0.440 0.836 0.714 0.083 -0.297 0.309 -0.730 0.616 -0.646 0.203 17.151
10.000 0.361 0.922 0.647 0.082 -0.296 0.302 -0.765 0.604 -0.671 0.153 19.527
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