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Abstract: Both building and bridge damage can affect the post-earthquake performance of a regional road 

network. Bridge damage may render routes impassable or reduce their capacities until repairs can be made, 

changing how drivers navigate. Building damage may displace people from their homes and communities and 

alter their origins or destinations. The severity and pattern of post-earthquake road network disruption will also 

evolve as bridges and buildings are repaired and people adjust their movements. For example, people who 

previously drove between their homes and workplaces may choose not to commute because all reasonable 

routes between the two are impassable due to bridge damage or because their workplace is not functional due 

to building damage. The consequences of people not being able to access their workplaces may have 

significant and longer-term implications for a region’s economic recovery. Methods for quantifying post-

earthquake road network disruption often neglect the changes in demand between origins and destinations 

that may arise from changes to the damage states of buildings in those locations. For example, the post-

earthquake origin-destination (OD) matrix for a road network may be assumed to be the same as the pre-

earthquake OD matrix. While predicting where people might relocate or want to go is complex, this assumption 

may result in inaccurate estimates of the benefits of seismically retrofitting bridges. We present a probabilistic 

method for simulating the effects of post-earthquake bridge damage and post-earthquake business interruption 

due to building damage on commuter traffic in a region. In the proposed method, we modify the OD matrix for 

a region to account for how business interruption due to building damage will affect commuters using HAZUS 

data. Through a case study of the San Francisco Bay Area, we show how the proposed method can be 

integrated into probabilistic seismic risk assessment frameworks and regional recovery simulations. The 

proposed method illuminates whether bridges or buildings are driving post-earthquake road network 

disruptions, enabling decision-makers to address the root cause of those disruptions by allocating limited 

retrofit budgets more effectively. 

1 Introduction 

Given the diversity of impacts attributed to post-earthquake road network disruption, methods for seismic risk 

assessment of road networks are similarly diverse in terms of the measures of road network disruption they 

use as decision variables or as bases for computing decision variables, in addition to varying in terms of their 

geographical scale, time frame considered (e.g., emergency response or long-term recovery), and the needs 

they aim to address (e.g., emergency planning, network expansion, risk mitigation) (e.g., Argyroudis et al., 

2015; Faturechi & Miller-Hooks, 2015). Approaches to quantifying the impacts of road network disruption fall 

into three categories of increasing computational complexity: topological approaches characterize the road 

network using graph theoretic metrics like connectivity, which indicates how well origins and destinations in 

the network are connected; functional approaches characterize the level of service provided to users of the 
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road network using measures like travel time, travel distance, mode-destination accessibility, and flow; and 

economic approaches aim to estimate the economic losses incurred by post-earthquake road network damage 

(Chang et al., 2012; Chang, 2016; Faturechi & Miller-Hooks, 2015; Miller, 2014).  

Seismic risk assessments can use these measures of disruption directly – for example, travel time is the most 

commonly used decision variable in the literature on transport infrastructure system performance in disasters 

(Faturechi & Miller-Hooks, 2015). Measures of disruption can also serve as inputs to a cost model (Argyroudis 

et al., 2015). Cost models typically sum two types of cost (or loss): the cost of restoring the functionality of 

damaged components (i.e., direct costs) and the costs associated with ongoing network disruption while 

damaged components undergo repair (i.e., indirect costs) (Hackl 2018; Dong et al., 2014; Kiremidjian et al., 

2007). Classical sources of indirect costs include travel time delay (the increase in time required to make all 

trips demanded on the damaged road network compared to normal conditions) and unmet demand (Hackl 

2018; e.g., Deco & Frangopol, 2013). Proposed additions to the category of indirect costs typically focus on 

societal impacts of road network disruption and include costs associated with the lost economic value of 

activities (e.g., working or shopping) not performed when trips are not made (Zhou et al., 2010), accidents that 

result in casualties (Deco & Frangopol, 2013), road network operations (Deco & Frangopol, 2013), carbon 

dioxide emissions, fatalities following an earthquake (Dong et al., 2014), and energy waste due to repair of 

damaged components (Dong et al., 2014). 

While travel time delay and the cost of road network performance can be useful measures of disruption, they 

may not improve our understanding of how network disruptions impact individuals or different groups of 

network users. If used as a decision variable, travel time delay implicitly assumes that all travellers have an 

equal value of time (VoT). VoT quantifies the willingness of a traveler to pay to reduce the time they spend in 

transit by one unit and is also referred to as the subjective (or behavioural) value of travel time (SVTT), and 

the subjective (or behavioural) value of travel time savings (e.g., Jara-Diaz & Guevara, 2003; Small, 2012). A 

traveller may be willing to pay to reduce the time they spend in transit because transit itself has low utility (i.e., 

they derive little satisfaction or pleasure from transiting) or because they could spend the time saved in more 

pleasurable or more useful (i.e., utility-enhancing) ways (Mackie et al., 2001). VoT can depend on qualities of 

the trip, such as its purpose (for work or for recreation), mode (e.g., car or bicycle), duration, or the time at 

which it is made (Mackie et al., 2001; Small & Verhoef, 2007). VoT can also vary depending on the 

characteristics of travelers themselves, including their individual preferences, demographic characteristics 

(e.g., age, sex, level of education, employment), and hourly income (Belenky, 2011; Small & Verhoef, 2007). 

Similarly, models of indirect cost in which travel time delay is multiplied by a single VoT to arrive at a monetary 

loss (Hackl2018) do not account for variations in VoT or for the diminishing marginal utility of income. 

If the characteristics of travellers that affect their VoT are not accounted for when traffic on the road network 

is simulated, subsequent disaggregation of travel time delay (or other summary measure of network 
performance) by those characteristics is not possible. Disaggregation of network performance measures is 

necessary to conduct equity analysis, the goal of which is to understand how fairly and/or justly the impacts of 

a particular policy – i.e., its costs and benefits – are distributed among members of society, including both 

users and non-users of the road network (Bills & Walker, 2017; Litman, 2002). Equity analysis is particularly 

important in light of historically inequitable transport planning processes and outcomes that have resulted in 

less-advantaged members of society having experienced disproportionately high shares of the costs and 

disproportionately low shares of the benefits of transport projects (e.g., Bills & Walker, 2017). 

Disasters are widely acknowledged to exacerbate existing societal inequities (e.g., Lindell & Prater, 2003), and 

assessing and limiting inequities in transport systems has been the subject of state and federal legislation in 

the US (Bills & Walker, 2017). Therefore, how risk assessment methods for road network account for impacts 

on different groups of people should be a key concern for researchers, given its importance to decision-makers. 

In transport systems, equity has two primary dimensions: horizontal equity considers how impacts are 

distributed among groups that are deemed equal in ability and need, while vertical equity considers how 

impacts are distributed among groups that differ in ability and need, e.g., people of different income levels 

(Bills & Walker, 2017). For example, Miller and Baker (2016) conduct a vertical equity analysis by examining 

how an individual’s income class (low, medium, high, or very high) and their household’s ratio of cars to workers 

affect their expected post-earthquake mode-destination accessibility decrease in the San Francisco Bay Area. 
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We previously presented a method for better characterizing the impacts of post-earthquake road network 

disruption on individual network users within a probabilistic seismic risk assessment framework (Silva-Lopez 

et al., 2022). We used welfare loss (as formulated by Galvez and Jara-Diaz (1998)) as a measure of road 

network performance within a probabilistic seismic risk assessment framework. Welfare loss (in units of utils) 

describes the value to society of individual travellers’ increased travel times and is a function of increased 

travel times as well as travellers’ SVTT, their marginal utilities of income, and the value placed by society on 

the utility of individual travellers (Mackie et al., 2001). As a summary statistic of network performance, welfare 

takes into account that the same change in commute time can impact commuters with different characteristics 

in different ways. Setting up the seismic risk assessment of a road network such that welfare losses can be 

computed also enables the disaggregation of summary statistics such that the impacts of disruptions on 

different groups can be articulated – a necessary prerequisite for devising more equitable network 

management policies. 

In this work, we continue to think about how metrics of road network disruption can better capture individuals’ 

experiences. While disruptions to workplaces are often framed in terms of business interruption, being unable 

to access workplaces may also have consequences for individuals’ livelihoods. In a study of transport-related 

business impacts of the 1994 Northridge earthquake, Gordon et al. (1998) surveyed individual commuters, 
who reported missing an average of 11.2 days of work after the earthquake due to damage to the work site, 
damage to their residences, and/or damage to their commute route, among other reasons. Connectivity losses 

may capture this disruption, but only in aggregate terms. Accounting for post-earthquake demand changes 

has been an area of substantial interest in the literature. One approach is to re-assess the trip generation 

model by modifying trip production (or push) and attraction (or pull) factors throughout the area of interest. For 

example, Guo et al. (2017) create a static origin-destination matrix for the immediate post-earthquake demand 

based on a gravity model that considers damaged facilities and evacuated households as push factors and 

medical care and emergency shelters as pull factors. A common way to model post-earthquake traffic demand 

is to simply scale the pre-earthquake origin-destination demand data. For example, Kilanitis and Sextos (2019) 

scale the pre-earthquake origin-destination demand matrix by a factor between 0 and 1 that varies with the 

time that has elapsed since the earthquake, thereby reflecting restoration of the network capacity and the 

resumption of pre-earthquake traffic patterns. This scaling assumes that the changes in traffic that follow an 

earthquake consist solely of decreases in traffic volume, not shifts in underlying patterns. 

In this study, we directly explore how post-earthquake road network disruption and business interruption 

resulting from building damage affect commuters’ ability to access their places of work at a regional scale. We 

propose a method for modelling shifts in commute demand that may occur after an earthquake. In this method, 

we modify the demand on the road network by excluding the trips of commuters whose workplaces remain 

interrupted due to building damage at the time of interest post-earthquake. We then assess how many 

commuters’ trips exceed their maximum acceptable commute time, a measure of road network performance 

that we refer to as the number of jobs affected by road network disruption (as distinct from those jobs affected 

by building damage). 

2 Methods 

We integrate two measures of road network performance – welfare loss and the number of jobs affected by 

roda network disruption – with an established event-based probabilistic seismic risk assessment framework. 

We previously integrated welfare loss into a probabilistic seismic risk assessment framework (Silva-Lopez et 

al. (2022)). Figure 1 shows how we extend previous frameworks to account for the number of jobs affected by 

road network disruption. 
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Figure 1 -- Diagram summarizing the evaluation of the impact of an earthquake scenario on users of the road 

network. 

2.1 Ground-motion intensity maps 

The first step involved in the seismic risk assessment of road networks is to use a seismic source model to 

generate 𝑛𝑆 earthquake scenarios that are consistent with the seismic hazard of the region where the road 

network is located. This seismic source model provides the rates, locations, faulting-types and magnitudes of 

earthquakes that can occur in the area. For each earthquake scenario 𝑗, a ground-motion model (GMM) is 

used to model the ground-motion intensity 𝐼𝑀 at each location of interest 𝑏. A GMM predicts the mean of the 

log ground-motion intensity (ln 𝑌) as well as the ground-motion intensity within- (𝜎) and between-event (𝜖) 

residual standard deviations. A GMM is function of many inputs, including the moment magnitude of the 

earthquake scenario 𝑀𝑗, a metric of  distance from location 𝑏 to the fault plane 𝑅𝑏𝑝, and the average shear 

wave velocity down to 30 meters at the 𝑏𝑡ℎ  location 𝑉𝑠30,𝑏 . For each 𝑗 of the 𝑛𝑆  earthquake scenarios, 𝑚 

ground-motion intensity maps can be sampled by sampling 𝑚 realisations of the spatially-correlated ground-

motion intensity residual terms (Han and Davidson (2012) provide a survey of sampling methods). The set of 

𝑛𝑆 × 𝑚 ground-motion intensity maps is indexed using 𝑛 (i.e., 𝑛 = 1, … , 𝑛𝑆 × 𝑚). Given the residuals, the total 

log ground-motion intensity at a bridge 𝑏 in a particular scenario 𝑛 can be computed per the following equation, 

 

ln 𝑌𝑏𝑗 − ln 𝑌(𝑀𝑗 , 𝑅𝑏𝑝, 𝑉𝑠30,𝑏 , … ) + 𝜎𝑏𝑗𝜖𝑏𝑗 + 𝜏𝑗𝜂𝑗 

where 𝜎𝑏𝑗 is the within-event residual standard deviation, 𝜖𝑏𝑗 is the normalized within-event residual in ln 𝑌, 

𝜏𝑏𝑗 is the between-event residual standard deviation, 𝜂𝑗 is the normalized between-event residual in ln 𝑌, and 

the other parameters are as described above. Both 𝜖𝑏𝑗  and 𝜂𝑗  are standard normal random variables. 𝜖𝑏𝑗 

represents location-to-location variability; its vector can be modelled using a spatially-correlated multivariate 

normal distribution. 𝜂𝑗  represents between-event variability; its vector can be modelled using a standard 

univariate normal distribution. This procedure produces a set of 𝑛𝑆 × 𝑚 ground-motion intensity maps. The 

annual rate of occurrence for the 𝑘𝑡ℎ  ground-motion intensity map is the original occurrence rate of the 

associated earthquake scenario 𝑗𝑆 divided by 𝑚, since there are 𝑚 ground-motion intensity maps simulated 

for every earthquake scenario. 

2.2 Damage maps 

For each ground-motion intensity map, we sample a damage map which can be expressed as a vector of B 

binary variables, each indicating the functionality of a bridge or building. The probability that a component 

experiences a damage state that reduces its normal functionality given a particular ground-motion intensity 

can be quantified using a fragility function, as given in the following equation. 
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𝑃(𝐷𝑆𝑏 ≥ 𝑑𝑠|𝑌𝑏𝑗 − 𝑦) = Φ (
ln (

𝑦
𝑓𝑏

)

𝛽𝑏

) 

where 𝑌𝑏𝑗  denotes the ground-motion intensity at site 𝑏  in ground-motion intensity map 𝑗 , Φ denotes the 

standard normal cumulative distribution function, and ln 𝑓𝑏  and 𝛽𝑏  are the mean and standard deviation, 

respectively, of the ln 𝑌𝑏 value required to cause the damage state of interest, 𝑑𝑠, to occur or be exceeded for 

the 𝑏𝑡ℎ component. Bridge damage results in partial or total closure of the roads carried by the damaged 

bridge, while building damage result in business interruptions. More severe damage results in greater loss of 

functionality. 

2.3 Model of road network performance 

A traffic model typically includes four sub-models for trip generation, trip distribution, modal split, and traffic 

assignment, in that order (Patriksson, 2015). The case study in the following section uses a simplified traffic 

model that takes advantage of publicly available empirical data on commuters’ residences and places of work 

at the census block level to replace the trip generation, distribution, and modal split sub-models. However, 

more complex traffic models are compatible with the proposed method for evaluating road network 

performance. Here we briefly describe the simplified traffic assignment procedure used in the case study. 

Traffic assignment model 

A traffic assignment model takes as input a directed graph of the road network, G, and the demand between 

a set of origins and destinations. It returns measures of road network performance, such as the aggregate 

travel time, total vehicle-miles travelled, and the number of completed trips. The road network graph comprises 

a set of vertices, V, and a set of edges connecting them, E. Each edge has associated properties – including 

length, capacity in vehicles per unit of time, free-flow traversal time, and flow (the number of vehicles assigned 

to it by the traffic assignment model) – that determine how quickly vehicles traverse it. The traffic assignment 

model assigns trips to edges according to a rule or set of rules. A common rule is to assign trips to the shortest-

time path between an origin and destination. Assigning trips to edges within a path modifies their properties, 

e.g., increasing their traversal times. The demand on the road network can be defined in an origin-destination 

matrix, a two-dimensional array in which each element is the number of trips desired between a particular 

origin and corresponding destination in a given time period. 

Road network performance 

Once the traffic assignment model has distributed trips to edges within the road network, the aggregate travel 

time, T, can be computed using the following equation: 

𝑇 =  ∑ 𝑞𝑒𝑡𝑒

𝑒∈𝐸

 

where e is an edge in the set of all edges in the network, E, 𝑞𝑒 is the flow over edge e, and 𝑡𝑒 is the traversal 

time over edge e. The change in aggregate travel time on a version of the road network that includes damaged 

bridges compared to the undamaged road network is determined by computing T for each version of the road 

network and calculating their difference. 

2.4 Welfare model  

To better capture how the travel time delays previously described impact network users with different 
characteristics, we previously adopt the welfare model presented by Mackie et al. (2001) (Silva-Lopez et al., 

2022). This welfare model weights the change in a network user’s travel time by factors that account for how 

valuable the time saved or additional time spent is to the particular user, as determined using information about 

their individual earnings. This model is particularly useful because it can be used with traffic models of varying 

sophistication, from the traffic assignment model used in the example of Section 3 to more sophisticated 

activity-based travel demand models that planners  may wish to use. To implement the welfare model of Mackie 

et al. (2001), we first augment the origin-destination matrix that is an input to the traffic model with information 

about the individual earnings of each traveler. Information on commuters’ incomes is necessary to estimate 

the change in welfare, ∆W , as defined by Mackie et al. (2001) in the following equation, 
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Δ𝑊 =  ∑ Ω𝑞𝜆𝑞𝑆𝑉𝑇𝑇𝑞Δ𝑇𝑞

𝑞

 

where Δ𝑊 is the change in welfare, q denotes different income groups, Ω𝑞 is a weight assigned to group q, 

𝜆𝑞is the marginal utility of income among members of group q, 𝑆𝑉𝑇𝑇𝑞 is the subjective value of travel time for 

members of group q, and Δ𝑇𝑞 is the change in the aggregate travel time of members of group q. Further details 

of the welfare model are given in Silva-Lopez et al. (2022). 

2.5 Impact of business interruption on commutes 

Building damage can lead to business interruptions, which in turn reduce the number of commuters using the 

road network: commuters who know their workplace has sustained significant damage will not drive to work 

(e.g., Gordon et al., 1998). To capture this effect, the damage state of each building is used to obtain its 

business interruption time, which depends on the building occupancy type (e.g., Federal Emergency 

Management Agency, 2015). Realizations of building damage are obtained simultaneously with realizations of 

bridge damage. The performance of the road network is estimated for a particular time of interest, defined as 

the number of days post-earthquake. People who work in buildings with business interruption times greater 

than this number of days are removed from the demand on the road network. This process could be repeated 

at multiple times of interest to estimate demand as businesses recover functionality. Since the number of 

workers is typically known at the census tract level rather than for each building, the number of workers who 

stop using the road network is assumed to be proportional to the fractional loss of building space in the census 

tract. Thus, the updated number of commuters that need to travel to a destination D is: 

𝑑∙𝐷
′ − 𝑑∙𝐷 (1 −

∑ 𝑓𝑖𝑠𝑖
𝑛𝐷
𝑖=1

∑ 𝑠𝑖
𝑛𝐷
𝑖=1

) 

Where 𝑑∙𝐷  is the number of people who work in census tract D in normal conditions, 𝑛𝐷 is the number of 

buildings in census tract D, 𝑠𝑖 is the number of stories of a given building, and 𝑓𝑖 is a binary variable equal to 

1 if building i has business interruption and 0 if not. To use these results ot reduce the trip demand as described 

by the OD matrix, the people who stop using the road network also need to be assigned to an origin census 

tract. The assignment is assumed to be proportional to the trip demand under normal conditions. In other 

words, at each destination census tract, the number of people that stop commuting from all other census tracts 

is assumed to be proportional to the original number of commuters. Thus, the updated demand from all origin-

destination pairs is computed as: 

𝑑𝑂𝐷
′ − 𝑑𝑂𝐷

𝑑∙𝐷
′

𝑑∙𝐷

 

where 𝑑𝑂𝐷 is the demand between origin O and destination D in normal conditions. Through direct modification 

of the OD matrix demand due to building damage, we can explicitly distinguish commutes that are made longer 

due to bridge damage to those that are not made due to business interruption. We refer to the former as jobs 

affected by road network disruption (J), or simply jobs affected, and describe how to compute them in the 

following subsection. By modifying the demand on the road network in this fashion, we can better distinguish 

the post-earthquake traffic disruptions that can be mitigated by improving the resilience of the road network 

from those that are a consequence of building damage. Drawing this distinction can help set expectations for 

what different seismic risk mitigation strategies can reasonably achieve. 

2.6 Jobs affected by road network disruption 

To quantify the number of jobs affected by road network disruption, J, we assume that a person will commute 

if the utility of going to work exceeds the utility of staying at home. The longer the commute, the smaller the 

utility associated with commuting. The behavioral mechanisms that define an individual’s exact willingness to 

commute are complex and further complicated by the post-earthquake context that we are modeling. For this 

study, we use a simple model to characterize individuals’ willingness to commute: if an individual’s commute 

time from an origin O to a destination D, 𝑡𝑂𝐷, exceeds a universal maximum acceptable commute time tmax, 

then that individual will not commute and their job will be counted as affected by road network disruption. This 

model is similar to that used by Kroll et al. (2020), who compare a commuter’s travel time after an earthquake 

to their optimal commute time to determine whether said commuter would find the change in time acceptable 
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and still make the trip. This model for the number of jobs affected by road network disruption is given in the 

following equation, 

𝐽𝑂𝐷 = {
1 if 𝑡𝑂𝐷 ≥ 𝑡𝑚𝑎𝑥

0 if 𝑡𝑂𝐷 < 𝑡𝑚𝑎𝑥
 

where 𝐽𝑂𝐷 is an indicator for whether the job of the worker going from O to D is affected (1) or not (0). In the 

case study of the following section, we use a maximum acceptable one-way commute time of four hours for 

all commuters, based on the assumptions (consistent with those made in the economic data we use) that each 

worker has an eight-hour work day, requires eight hours of rest, and returns to their home after work, leaving 

a maximum of eight hours in which to travel from home to work and back. More complex models of individuals’ 

willingness to commute may better capture individual sentiment; the proposed method is compatible with these 

more sophisticated models. 

3 Case Study: San Francisco Bay Area 

We use the nine-county San Francisco Bay Area as a testbed in which to demonstrate the proposed method 

and the potential insights that could be gleaned through its implementation and use. 

3.1 Ground-motion intensity and damage maps 

For this case study, we generate one ground-motion intensity map and corresponding damage map for a 7.0 

Mw rupture on the Hayward Fault. We simulate spatially- and cross- correlated ground motions at all 1743 

bridges and at all 1582 census tract centroids in the Bay Area, based on the 2010 census. The ground-motion 

intensity measure for the maps used to simulate bridge damage is the 5%-damped pseudo absolute spectral 

acceleration (Sa) at a period of 1 second, the required input to the bridge fragility functions provided by Caltrans 

(Miller, 2014). The ground-motion intensity measure for the maps used to simulate building damage is the 

peak ground acceleration (PGA), which is used as the input to HAZUS building fragility functions (Federal 

Emergency Management Agency, 2015). To model spatial correlation we used the model proposed by 

Jayaram and Baker (2009), and to compute cross correlations between PGA and Sa = 1s, we used the study 

developed by Loth and Baker (2013). We assumed that all buildings in a particular census tract experience 

the same ground-shaking in a particular scenario. To reduce the computational 

burden of this analysis, a hazard-consistent subset of a full earthquake rupture forecast could be obtained 

using an optimization procedure such as that detailed by Han and Davidson (2012) or Miller (2014). 

3.2 Traffic assignment model 

Graph of road network 

The San Francisco Bay Area road network is modelled as a directed graph G ~ (V,E) and shown in Figure 2 

(Miller 2014). The road network includes 1743 state-owned highway bridges, and the region contains 

2,129,609 buildings, resulting in a total of 2,131,352 components whose damage we simulate. Each edge in 

E has properties that determine its traversal time given a traffic volume according to the commonly used 

Bureau of Public Roads travel time function, 

𝑡𝑎 = 𝑡𝑓(1 + 0.15 (
𝑞𝑎

𝑐𝑓

)

4

) 

where 𝑡𝑓  denotes the free-flow travel time, 𝑡𝑎  denotes the capacity-dependent travel time, 𝑐𝑓  is the hourly 

capacity, and 𝑞𝑎 is the hourly flow on the edge (Bureau of Public Roads, 1964). All bridges in the road network 

are associated with edges in E. To model a complete road closure due to a damaged bridge, the associated 

edges are modified to have an hourly capacity 𝑐𝑓 = 0 and both free-flow and capacity-dependent travel times 

𝑡𝑓 , 𝑡𝑎 =  ∞ to ensure no trips are assigned to those edges. 

Demand on road network 

We obtain the demand on the road network from the Longitudinal Employer-Household Dynamics Origin-

Destination Employment Statistics (LODES) data set, Version 7.5 (U.S. Census Bureau, 2010). The LODES 

data set tabulates the census tract in which a commuter lives, the census tract in which they 

work, and their membership in one of three income groups (low, medium, or high) based on their annual 

individual earnings (U.S. Census Bureau, 2010). We can therefore define an origin-destination matrix for 
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the region of interest in which each trip is associated with the income group of the commuter demanding 

it. Since the edge capacities of the linksin G are hourly, we scale the daily demand by a factor of 0.21 to get 

the hourly demand during the 6 am - 10 am window, a peak commuting time (Wang et al., 2012).  

 

 
Figure 2 -- Map of the San Francisco Bay Area road network used in this study (Miller, 2014). 

3.3 Results 

 
Figure 3 shows the number of trips lost by origin census tract immediately following a 7.0 Mw earthquake on 

the Hayward Fault when the original origin-destination matrix is used (left) and when the origin-destination 

matrix is modified to account for business interruption (right). We observe that when business interruption is 

considered in the origin-destination matrix, the number and spatial distribution of trips lost is different than 

when traffic is simulated using the origin-destination matrix derived under normal circumstances. For example, 

the number of lost trips that begin in census tracts north and east of the San Francisco Bay is markedly reduced 

when the origin-destination matrix is modified to account for business interruption as compared to when the 

origin-destination matrix is left unchanged. This suggests that many trips originating in those areas are more 

affected by building damage than by bridge damage, at this particular point in the post-earthquake timeline. In 

contrast, the number of trips lost that originate along the southern edge of the San Francisco Bay is largely 

unchanged when the origin-destination matrix is modified to account for business interruption. This suggests 

that trips originating in the southern part of the study area are more impacted by bridge damage than by 

business interruption.  
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Figure 3 – Maps of the San Francisco Bay Area showing the difference in the number of lost trips at the 

census-tract level when the original OD matrix is used (left) and when the modified OD matrix, which 

accounts for building damage and resulting business interruption, is used (right).  

4 Discussion and Conclusions 

In this work, we present a rational method for modifying the demand on a road network after an earthquake to 

account for how business interruptions stemming from building damage will affect commuters. A case study 

of the San Francisco Bay Area immediately following a 7.0 moment magnitude earthquake on the Hayward 

Fault shows that accounting for the change in commute demand on a road network due to business interruption 

at commuters’ workplaces can have significant impacts on both the magnitude of the number of trips that 

cannot be made on the road network and the spatial distribution of those lost trips. While we demonstrate the 

proposed method for a single point in the post-earthquake timeline, it can be applied at multiple such points to 

develop a more comprehensive view of how the impacts of bridge damage and business interruption due to 

building damage evolve over time. Future work will address how to optimally select points along the post-

earthquake timeline at which to simulate bridge and building damage, as well as the performance of the road 

network, to minimize computational burden while maximizing information gained about the impacts of the 

earthquake on the study region. 

Not modifying the commute demand on a road network after an earthquake risks painting a misleading picture 

of who is impacted by bridge and building damage, as well as of the magnitude of those impacts throughout 

the affected region. For policy-makers, decision-makers, and asset managers tasked with reducing the 

community and economic impacts of earthquakes, understanding which assets – bridges or buildings – are 

driving those impacts is a necessary first step in developing appropriate and equitable mitigation strategies. 
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